Nach a auflösen
a=-1
Teilen
In die Zwischenablage kopiert
2\left(8-1\right)+1=5\left(4+a\right)
Multiplizieren Sie 2 und 4, um 8 zu erhalten.
2\times 7+1=5\left(4+a\right)
Subtrahieren Sie 1 von 8, um 7 zu erhalten.
14+1=5\left(4+a\right)
Multiplizieren Sie 2 und 7, um 14 zu erhalten.
15=5\left(4+a\right)
Addieren Sie 14 und 1, um 15 zu erhalten.
15=20+5a
Verwenden Sie das Distributivgesetz, um 5 mit 4+a zu multiplizieren.
20+5a=15
Seiten vertauschen, damit alle Terme mit Variablen auf der linken Seite sind.
5a=15-20
Subtrahieren Sie 20 von beiden Seiten.
5a=-5
Subtrahieren Sie 20 von 15, um -5 zu erhalten.
a=\frac{-5}{5}
Dividieren Sie beide Seiten durch 5.
a=-1
Dividieren Sie -5 durch 5, um -1 zu erhalten.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}