Auswerten
70x+6000
Erweitern
70x+6000
Diagramm
Teilen
In die Zwischenablage kopiert
150x+120\left(\frac{50\times 3}{3}-\frac{2x}{3}\right)
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie 50 mit \frac{3}{3}.
150x+120\times \frac{50\times 3-2x}{3}
Da \frac{50\times 3}{3} und \frac{2x}{3} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
150x+120\times \frac{150-2x}{3}
Führen Sie die Multiplikationen als "50\times 3-2x" aus.
150x+40\left(150-2x\right)
Den größten gemeinsamen Faktor 3 in 120 und 3 aufheben.
150x+6000-80x
Verwenden Sie das Distributivgesetz, um 40 mit 150-2x zu multiplizieren.
70x+6000
Kombinieren Sie 150x und -80x, um 70x zu erhalten.
150x+120\left(\frac{50\times 3}{3}-\frac{2x}{3}\right)
Um Ausdrücke zu addieren oder subtrahieren, erweitern Sie sie, um ihre Nenner gleichnamig zu machen. Multiplizieren Sie 50 mit \frac{3}{3}.
150x+120\times \frac{50\times 3-2x}{3}
Da \frac{50\times 3}{3} und \frac{2x}{3} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
150x+120\times \frac{150-2x}{3}
Führen Sie die Multiplikationen als "50\times 3-2x" aus.
150x+40\left(150-2x\right)
Den größten gemeinsamen Faktor 3 in 120 und 3 aufheben.
150x+6000-80x
Verwenden Sie das Distributivgesetz, um 40 mit 150-2x zu multiplizieren.
70x+6000
Kombinieren Sie 150x und -80x, um 70x zu erhalten.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}