Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{2}+3x+2=2-x
Verwenden Sie das Distributivgesetz, um x+1 mit x+2 zu multiplizieren und gleiche Terme zusammenzufassen.
x^{2}+3x+2-2=-x
Subtrahieren Sie 2 von beiden Seiten.
x^{2}+3x=-x
Subtrahieren Sie 2 von 2, um 0 zu erhalten.
x^{2}+3x+x=0
Auf beiden Seiten x addieren.
x^{2}+4x=0
Kombinieren Sie 3x und x, um 4x zu erhalten.
x=\frac{-4±\sqrt{4^{2}}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch 4 und c durch 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2}
Ziehen Sie die Quadratwurzel aus 4^{2}.
x=\frac{0}{2}
Lösen Sie jetzt die Gleichung x=\frac{-4±4}{2}, wenn ± positiv ist. Addieren Sie -4 zu 4.
x=0
Dividieren Sie 0 durch 2.
x=-\frac{8}{2}
Lösen Sie jetzt die Gleichung x=\frac{-4±4}{2}, wenn ± negativ ist. Subtrahieren Sie 4 von -4.
x=-4
Dividieren Sie -8 durch 2.
x=0 x=-4
Die Gleichung ist jetzt gelöst.
x^{2}+3x+2=2-x
Verwenden Sie das Distributivgesetz, um x+1 mit x+2 zu multiplizieren und gleiche Terme zusammenzufassen.
x^{2}+3x+2+x=2
Auf beiden Seiten x addieren.
x^{2}+4x+2=2
Kombinieren Sie 3x und x, um 4x zu erhalten.
x^{2}+4x=2-2
Subtrahieren Sie 2 von beiden Seiten.
x^{2}+4x=0
Subtrahieren Sie 2 von 2, um 0 zu erhalten.
x^{2}+4x+2^{2}=2^{2}
Dividieren Sie 4, den Koeffizienten des Terms x, durch 2, um 2 zu erhalten. Addieren Sie dann das Quadrat von 2 zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}+4x+4=4
2 zum Quadrat.
\left(x+2\right)^{2}=4
Faktor x^{2}+4x+4. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x+2=2 x+2=-2
Vereinfachen.
x=0 x=-4
2 von beiden Seiten der Gleichung subtrahieren.