( 15 \quad 3 x ^ { 2 } = 27 x
Nach x auflösen
x=\frac{3}{17}\approx 0,176470588
x=0
Diagramm
Teilen
In die Zwischenablage kopiert
153x^{2}-27x=0
Subtrahieren Sie 27x von beiden Seiten.
x\left(153x-27\right)=0
Klammern Sie x aus.
x=0 x=\frac{3}{17}
Um Lösungen für die Gleichungen zu finden, lösen Sie x=0 und 153x-27=0.
153x^{2}-27x=0
Subtrahieren Sie 27x von beiden Seiten.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}}}{2\times 153}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 153, b durch -27 und c durch 0, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-27\right)±27}{2\times 153}
Ziehen Sie die Quadratwurzel aus \left(-27\right)^{2}.
x=\frac{27±27}{2\times 153}
Das Gegenteil von -27 ist 27.
x=\frac{27±27}{306}
Multiplizieren Sie 2 mit 153.
x=\frac{54}{306}
Lösen Sie jetzt die Gleichung x=\frac{27±27}{306}, wenn ± positiv ist. Addieren Sie 27 zu 27.
x=\frac{3}{17}
Verringern Sie den Bruch \frac{54}{306} um den niedrigsten Term, indem Sie 18 extrahieren und aufheben.
x=\frac{0}{306}
Lösen Sie jetzt die Gleichung x=\frac{27±27}{306}, wenn ± negativ ist. Subtrahieren Sie 27 von 27.
x=0
Dividieren Sie 0 durch 306.
x=\frac{3}{17} x=0
Die Gleichung ist jetzt gelöst.
153x^{2}-27x=0
Subtrahieren Sie 27x von beiden Seiten.
\frac{153x^{2}-27x}{153}=\frac{0}{153}
Dividieren Sie beide Seiten durch 153.
x^{2}+\left(-\frac{27}{153}\right)x=\frac{0}{153}
Division durch 153 macht die Multiplikation mit 153 rückgängig.
x^{2}-\frac{3}{17}x=\frac{0}{153}
Verringern Sie den Bruch \frac{-27}{153} um den niedrigsten Term, indem Sie 9 extrahieren und aufheben.
x^{2}-\frac{3}{17}x=0
Dividieren Sie 0 durch 153.
x^{2}-\frac{3}{17}x+\left(-\frac{3}{34}\right)^{2}=\left(-\frac{3}{34}\right)^{2}
Dividieren Sie -\frac{3}{17}, den Koeffizienten des Terms x, durch 2, um -\frac{3}{34} zu erhalten. Addieren Sie dann das Quadrat von -\frac{3}{34} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}-\frac{3}{17}x+\frac{9}{1156}=\frac{9}{1156}
Bestimmen Sie das Quadrat von -\frac{3}{34}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
\left(x-\frac{3}{34}\right)^{2}=\frac{9}{1156}
Faktor x^{2}-\frac{3}{17}x+\frac{9}{1156}. Wenn x^{2}+bx+c ein perfektes Quadrat ist, kann es im Allgemeinen immer als \left(x+\frac{b}{2}\right)^{2} faktorisieren.
\sqrt{\left(x-\frac{3}{34}\right)^{2}}=\sqrt{\frac{9}{1156}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-\frac{3}{34}=\frac{3}{34} x-\frac{3}{34}=-\frac{3}{34}
Vereinfachen.
x=\frac{3}{17} x=0
Addieren Sie \frac{3}{34} zu beiden Seiten der Gleichung.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}