Auswerten
-\frac{1}{8}=-0,125
Faktorisieren
-\frac{1}{8} = -0,125
Teilen
In die Zwischenablage kopiert
\frac{\frac{1}{4}}{-\frac{1}{3}}\left(\frac{1}{2}-\frac{1}{3}\right)
Potenzieren Sie -\frac{1}{2} mit 2, und erhalten Sie \frac{1}{4}.
\frac{1}{4}\left(-3\right)\left(\frac{1}{2}-\frac{1}{3}\right)
Dividieren Sie \frac{1}{4} durch -\frac{1}{3}, indem Sie \frac{1}{4} mit dem Kehrwert von -\frac{1}{3} multiplizieren.
\frac{-3}{4}\left(\frac{1}{2}-\frac{1}{3}\right)
Multiplizieren Sie \frac{1}{4} und -3, um \frac{-3}{4} zu erhalten.
-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{3}\right)
Der Bruch \frac{-3}{4} kann als -\frac{3}{4} umgeschrieben werden, indem das negative Vorzeichen extrahiert wird.
-\frac{3}{4}\left(\frac{3}{6}-\frac{2}{6}\right)
Das kleinste gemeinsame Vielfache von 2 und 3 ist 6. Konvertiert \frac{1}{2} und \frac{1}{3} in Brüche mit dem Nenner 6.
-\frac{3}{4}\times \frac{3-2}{6}
Da \frac{3}{6} und \frac{2}{6} denselben Nenner haben, subtrahieren Sie diese, indem Sie ihre Zähler subtrahieren.
-\frac{3}{4}\times \frac{1}{6}
Subtrahieren Sie 2 von 3, um 1 zu erhalten.
\frac{-3}{4\times 6}
Multiplizieren Sie -\frac{3}{4} mit \frac{1}{6}, indem Sie den Zähler mit dem Zähler und den Nenner mit dem Nenner multiplizieren.
\frac{-3}{24}
Führen Sie die Multiplikationen im Bruch \frac{-3}{4\times 6} aus.
-\frac{1}{8}
Verringern Sie den Bruch \frac{-3}{24} um den niedrigsten Term, indem Sie 3 extrahieren und aufheben.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}