Direkt zum Inhalt
Auswerten
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\int _{0}^{1}x^{2}\left(1-3x+3x^{2}-x^{3}\right)\mathrm{d}x
\left(1-x\right)^{3} mit dem binomischen Lehrsatz "\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}" erweitern.
\int _{0}^{1}x^{2}-3x^{3}+3x^{4}-x^{5}\mathrm{d}x
Verwenden Sie das Distributivgesetz, um x^{2} mit 1-3x+3x^{2}-x^{3} zu multiplizieren.
\int x^{2}-3x^{3}+3x^{4}-x^{5}\mathrm{d}x
Werten Sie das bestimmte Integral zunächst aus.
\int x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int -x^{5}\mathrm{d}x
Summen-Ausdruck nach Ausdruck integrieren.
\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
Klammern Sie die Konstanten in jedem Ausdruck aus.
\frac{x^{3}}{3}-3\int x^{3}\mathrm{d}x+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{2}\mathrm{d}x durch \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{3}\mathrm{d}x durch \frac{x^{4}}{4}. Multiplizieren Sie -3 mit \frac{x^{4}}{4}.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+\frac{3x^{5}}{5}-\int x^{5}\mathrm{d}x
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{4}\mathrm{d}x durch \frac{x^{5}}{5}. Multiplizieren Sie 3 mit \frac{x^{5}}{5}.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+\frac{3x^{5}}{5}-\frac{x^{6}}{6}
Wenn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} für k\neq -1, ersetzen Sie \int x^{5}\mathrm{d}x durch \frac{x^{6}}{6}. Multiplizieren Sie -1 mit \frac{x^{6}}{6}.
-\frac{x^{6}}{6}+\frac{3x^{5}}{5}-\frac{3x^{4}}{4}+\frac{x^{3}}{3}
Vereinfachen.
-\frac{1^{6}}{6}+\frac{3}{5}\times 1^{5}-\frac{3}{4}\times 1^{4}+\frac{1^{3}}{3}-\left(-\frac{0^{6}}{6}+\frac{3}{5}\times 0^{5}-\frac{3}{4}\times 0^{4}+\frac{0^{3}}{3}\right)
Das bestimmte Integral ist der Wert des unbestimmten Integrals des Ausdrucks am oberen Grenzwert der Integralrechnung minus der Wert des unbestimmten Integrals am unteren Grenzwert der Integralrechnung.
\frac{1}{60}
Vereinfachen.