Auswerten
\frac{4}{3\left(2-3y\right)}
W.r.t. y differenzieren
\frac{4}{\left(2-3y\right)^{2}}
Diagramm
Teilen
In die Zwischenablage kopiert
\frac{8y}{6y\left(-3y+2\right)}
Faktorisieren Sie die Ausdrücke, die noch nicht faktorisiert sind.
\frac{4}{3\left(-3y+2\right)}
Heben Sie 2y sowohl im Zähler als auch im Nenner auf.
\frac{4}{-9y+6}
Erweitern Sie den Ausdruck.
\frac{\left(12y^{1}-18y^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(8y^{1})-8y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(12y^{1}-18y^{2})}{\left(12y^{1}-18y^{2}\right)^{2}}
Für zwei beliebige differenzierbare Funktionen ergibt sich die Ableitung des Quotienten der beiden Funktionen durch Multiplikation des Nenners mit der Ableitung des Zählers minus dem Produkt aus dem Zähler mit der Ableitung des Nenners, das Ganze dividiert durch das Quadrat des Nenners.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{1-1}-8y^{1}\left(12y^{1-1}+2\left(-18\right)y^{2-1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Die Ableitung eines Polynoms ist die Summer der Ableitungen seiner Terme. Die Ableitung eines Terms mit Konstanten ist 0. Die Ableitung von ax^{n} ist nax^{n-1}.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vereinfachen.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Multiplizieren Sie 12y^{1}-18y^{2} mit 8y^{0}.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-\left(8y^{1}\times 12y^{0}+8y^{1}\left(-36\right)y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Multiplizieren Sie 8y^{1} mit 12y^{0}-36y^{1}.
\frac{12\times 8y^{1}-18\times 8y^{2}-\left(8\times 12y^{1}+8\left(-36\right)y^{1+1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Um Potenzen der gleichen Basis zu multiplizieren, addieren Sie ihre Exponenten.
\frac{96y^{1}-144y^{2}-\left(96y^{1}-288y^{2}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Vereinfachen.
\frac{144y^{2}}{\left(12y^{1}-18y^{2}\right)^{2}}
Kombinieren Sie ähnliche Terme.
\frac{144y^{2}}{\left(12y-18y^{2}\right)^{2}}
Für jeden Term t, t^{1}=t.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}