\frac { 1 } { y + 1 } d y = ( 2 x + 1 ) d x
Nach d auflösen (komplexe Lösung)
\left\{\begin{matrix}d=0\text{, }&y\neq -1\\d\in \mathrm{C}\text{, }&y=-\frac{x\left(2x+1\right)}{\left(2x-1\right)\left(x+1\right)}\text{ and }x\neq \frac{1}{2}\text{ and }x\neq -1\end{matrix}\right,
Nach d auflösen
\left\{\begin{matrix}d=0\text{, }&y\neq -1\\d\in \mathrm{R}\text{, }&y=-\frac{x\left(2x+1\right)}{\left(2x-1\right)\left(x+1\right)}\text{ and }x\neq \frac{1}{2}\text{ and }x\neq -1\end{matrix}\right,
Nach x auflösen (komplexe Lösung)
\left\{\begin{matrix}x=\frac{\sqrt{\left(y+1\right)\left(9y+1\right)}-y-1}{4\left(y+1\right)}\text{; }x=-\frac{\sqrt{\left(y+1\right)\left(9y+1\right)}+y+1}{4\left(y+1\right)}\text{, }&y\neq -1\\x\in \mathrm{C}\text{, }&d=0\text{ and }y\neq -1\end{matrix}\right,
Nach x auflösen
\left\{\begin{matrix}x=\frac{\sqrt{\left(y+1\right)\left(9y+1\right)}-y-1}{4\left(y+1\right)}\text{; }x=-\frac{\sqrt{\left(y+1\right)\left(9y+1\right)}+y+1}{4\left(y+1\right)}\text{, }&y\geq -\frac{1}{9}\text{ or }y<-1\\x\in \mathrm{R}\text{, }&d=0\text{ and }y\neq -1\end{matrix}\right,
Diagramm
Teilen
In die Zwischenablage kopiert
1dy=\left(2x+1\right)dx\left(y+1\right)
Multiplizieren Sie beide Seiten der Gleichung mit y+1.
1dy=\left(2xd+d\right)x\left(y+1\right)
Verwenden Sie das Distributivgesetz, um 2x+1 mit d zu multiplizieren.
1dy=\left(2dx^{2}+dx\right)\left(y+1\right)
Verwenden Sie das Distributivgesetz, um 2xd+d mit x zu multiplizieren.
1dy=2dx^{2}y+2dx^{2}+dxy+dx
Verwenden Sie das Distributivgesetz, um 2dx^{2}+dx mit y+1 zu multiplizieren.
1dy-2dx^{2}y=2dx^{2}+dxy+dx
Subtrahieren Sie 2dx^{2}y von beiden Seiten.
1dy-2dx^{2}y-2dx^{2}=dxy+dx
Subtrahieren Sie 2dx^{2} von beiden Seiten.
1dy-2dx^{2}y-2dx^{2}-dxy=dx
Subtrahieren Sie dxy von beiden Seiten.
1dy-2dx^{2}y-2dx^{2}-dxy-dx=0
Subtrahieren Sie dx von beiden Seiten.
dy-2dyx^{2}-2dx^{2}-dxy-dx=0
Ordnen Sie die Terme neu an.
\left(y-2yx^{2}-2x^{2}-xy-x\right)d=0
Kombinieren Sie alle Terme, die d enthalten.
\left(y-2yx^{2}-x-xy-2x^{2}\right)d=0
Die Gleichung weist die Standardform auf.
d=0
Dividieren Sie 0 durch y-2yx^{2}-yx-2x^{2}-x.
1dy=\left(2x+1\right)dx\left(y+1\right)
Multiplizieren Sie beide Seiten der Gleichung mit y+1.
1dy=\left(2xd+d\right)x\left(y+1\right)
Verwenden Sie das Distributivgesetz, um 2x+1 mit d zu multiplizieren.
1dy=\left(2dx^{2}+dx\right)\left(y+1\right)
Verwenden Sie das Distributivgesetz, um 2xd+d mit x zu multiplizieren.
1dy=2dx^{2}y+2dx^{2}+dxy+dx
Verwenden Sie das Distributivgesetz, um 2dx^{2}+dx mit y+1 zu multiplizieren.
1dy-2dx^{2}y=2dx^{2}+dxy+dx
Subtrahieren Sie 2dx^{2}y von beiden Seiten.
1dy-2dx^{2}y-2dx^{2}=dxy+dx
Subtrahieren Sie 2dx^{2} von beiden Seiten.
1dy-2dx^{2}y-2dx^{2}-dxy=dx
Subtrahieren Sie dxy von beiden Seiten.
1dy-2dx^{2}y-2dx^{2}-dxy-dx=0
Subtrahieren Sie dx von beiden Seiten.
dy-2dyx^{2}-2dx^{2}-dxy-dx=0
Ordnen Sie die Terme neu an.
\left(y-2yx^{2}-2x^{2}-xy-x\right)d=0
Kombinieren Sie alle Terme, die d enthalten.
\left(y-2yx^{2}-x-xy-2x^{2}\right)d=0
Die Gleichung weist die Standardform auf.
d=0
Dividieren Sie 0 durch y-2yx^{2}-yx-2x^{2}-x.
Beispiele
Quadratische Gleichung
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineare Gleichung
y = 3x + 4
Arithmetisch
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultane Gleichung
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzierung
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenzwerte
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}