Direkt zum Inhalt
Auswerten
Tick mark Image
Erweitern
Tick mark Image

Ähnliche Aufgaben aus Websuche

Teilen

\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2b\right)^{3} mit dem binomischen Lehrsatz "\left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2\right)^{2} mit dem binomischen Lehrsatz "\left(p-q\right)^{2}=p^{2}-2pq+q^{2}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a+2\right)^{2} mit dem binomischen Lehrsatz "\left(p+q\right)^{2}=p^{2}+2pq+q^{2}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Verwenden Sie das Distributivgesetz, um a^{2}-4a+4 mit a^{2}+4a+4 zu multiplizieren und gleiche Terme zusammenzufassen.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie -8a^{2} und 4a^{2}, um -4a^{2} zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(2-a^{2}\right)^{2} mit dem binomischen Lehrsatz "\left(p-q\right)^{2}=p^{2}-2pq+q^{2}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Um eine Potenz einer Zahl zu potenzieren, multiplizieren Sie die Exponenten. Multiplizieren Sie 2 mit 2, um 4 zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Um das Gegenteil von "4-4a^{2}+a^{4}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Subtrahieren Sie 4 von 16, um 12 zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie -4a^{2} und 4a^{2}, um 0 zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie a^{4} und -a^{4}, um 0 zu erhalten.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Multiplizieren Sie \frac{1}{36} und 12, um \frac{1}{3} zu erhalten.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{3} mit a^{3}-6a^{2}b+12ab^{2}-8b^{3} zu multiplizieren.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Verwenden Sie das Distributivgesetz, um ab mit \frac{11}{3}b-a zu multiplizieren.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Um das Gegenteil von "\frac{11}{3}ab^{2}-ba^{2}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie 4ab^{2} und -\frac{11}{3}ab^{2}, um \frac{1}{3}ab^{2} zu erhalten.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie -2a^{2}b und ba^{2}, um -a^{2}b zu erhalten.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{3}a-b mit b^{2}+a^{2} zu multiplizieren.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Um das Gegenteil von "\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Kombinieren Sie \frac{1}{3}ab^{2} und -\frac{1}{3}ab^{2}, um 0 zu erhalten.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Kombinieren Sie \frac{1}{3}a^{3} und -\frac{1}{3}a^{3}, um 0 zu erhalten.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Kombinieren Sie -\frac{8}{3}b^{3} und b^{3}, um -\frac{5}{3}b^{3} zu erhalten.
-\frac{5}{3}b^{3}
Kombinieren Sie -a^{2}b und ba^{2}, um 0 zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2b\right)^{3} mit dem binomischen Lehrsatz "\left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2\right)^{2} mit dem binomischen Lehrsatz "\left(p-q\right)^{2}=p^{2}-2pq+q^{2}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a+2\right)^{2} mit dem binomischen Lehrsatz "\left(p+q\right)^{2}=p^{2}+2pq+q^{2}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Verwenden Sie das Distributivgesetz, um a^{2}-4a+4 mit a^{2}+4a+4 zu multiplizieren und gleiche Terme zusammenzufassen.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie -8a^{2} und 4a^{2}, um -4a^{2} zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(2-a^{2}\right)^{2} mit dem binomischen Lehrsatz "\left(p-q\right)^{2}=p^{2}-2pq+q^{2}" erweitern.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Um eine Potenz einer Zahl zu potenzieren, multiplizieren Sie die Exponenten. Multiplizieren Sie 2 mit 2, um 4 zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Um das Gegenteil von "4-4a^{2}+a^{4}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Subtrahieren Sie 4 von 16, um 12 zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie -4a^{2} und 4a^{2}, um 0 zu erhalten.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie a^{4} und -a^{4}, um 0 zu erhalten.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Multiplizieren Sie \frac{1}{36} und 12, um \frac{1}{3} zu erhalten.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{3} mit a^{3}-6a^{2}b+12ab^{2}-8b^{3} zu multiplizieren.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Verwenden Sie das Distributivgesetz, um ab mit \frac{11}{3}b-a zu multiplizieren.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Um das Gegenteil von "\frac{11}{3}ab^{2}-ba^{2}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie 4ab^{2} und -\frac{11}{3}ab^{2}, um \frac{1}{3}ab^{2} zu erhalten.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombinieren Sie -2a^{2}b und ba^{2}, um -a^{2}b zu erhalten.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Verwenden Sie das Distributivgesetz, um \frac{1}{3}a-b mit b^{2}+a^{2} zu multiplizieren.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Um das Gegenteil von "\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}" zu finden, suchen Sie nach dem Gegenteil jedes Terms.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Kombinieren Sie \frac{1}{3}ab^{2} und -\frac{1}{3}ab^{2}, um 0 zu erhalten.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Kombinieren Sie \frac{1}{3}a^{3} und -\frac{1}{3}a^{3}, um 0 zu erhalten.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Kombinieren Sie -\frac{8}{3}b^{3} und b^{3}, um -\frac{5}{3}b^{3} zu erhalten.
-\frac{5}{3}b^{3}
Kombinieren Sie -a^{2}b und ba^{2}, um 0 zu erhalten.