Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x\left(x-7\right)
Udfaktoriser x.
x^{2}-7x=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-\left(-7\right)±7}{2}
Tag kvadratroden af \left(-7\right)^{2}.
x=\frac{7±7}{2}
Det modsatte af -7 er 7.
x=\frac{14}{2}
Nu skal du løse ligningen, x=\frac{7±7}{2} når ± er plus. Adder 7 til 7.
x=7
Divider 14 med 2.
x=\frac{0}{2}
Nu skal du løse ligningen, x=\frac{7±7}{2} når ± er minus. Subtraher 7 fra 7.
x=0
Divider 0 med 2.
x^{2}-7x=\left(x-7\right)x
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat 7 med x_{1} og 0 med x_{2}.