Løs for g
\left\{\begin{matrix}g=-\frac{b^{2}-v^{2}}{2s}\text{, }&\left(v\geq 0\text{ and }s\neq 0\text{ and }v>-b\text{ and }v\leq b\right)\text{ or }\left(s\neq 0\text{ and }v=-b\text{ and }b\leq 0\right)\text{ or }\left(v\geq 0\text{ and }s\neq 0\text{ and }b\leq -\sqrt{\left(b-v\right)\left(v+b\right)}\text{ and }v\leq -b\text{ and }v\geq b\right)\text{ or }\left(v\geq 0\text{ and }s\neq 0\text{ and }b\leq -\sqrt{\left(b-v\right)\left(v+b\right)}\text{ and }v\leq b\text{ and }v\geq -b\right)\text{ or }\left(s\neq 0\text{ and }v>|b|\right)\\g\in \mathrm{R}\text{, }&v=|b|\text{ and }s=0\end{matrix}\right,
Løs for b (complex solution)
b=-\sqrt{v^{2}-2gs}
b=\sqrt{v^{2}-2gs}\text{, }arg(v)<\pi \text{ or }v=0
Løs for g (complex solution)
\left\{\begin{matrix}g=-\frac{b^{2}-v^{2}}{2s}\text{, }&s\neq 0\text{ and }\left(arg(v)<\pi \text{ or }v=0\right)\\g\in \mathrm{C}\text{, }&\left(v=0\text{ and }s=0\text{ and }b=0\right)\text{ or }\left(v=-b\text{ and }s=0\text{ and }arg(b)\geq \pi \text{ and }b\neq 0\right)\text{ or }\left(v=b\text{ and }s=0\text{ and }arg(b)<\pi \text{ and }b\neq 0\right)\end{matrix}\right,
Aktie
Kopieret til udklipsholder
\sqrt{b^{2}+2gs}=v
Skift side, så alle variable led er placeret på venstre side.
2sg+b^{2}=v^{2}
Kvadrér begge sider af ligningen.
2sg+b^{2}-b^{2}=v^{2}-b^{2}
Subtraher b^{2} fra begge sider af ligningen.
2sg=v^{2}-b^{2}
Hvis b^{2} subtraheres fra sig selv, giver det 0.
2sg=\left(v-b\right)\left(v+b\right)
Subtraher b^{2} fra v^{2}.
\frac{2sg}{2s}=\frac{\left(v-b\right)\left(v+b\right)}{2s}
Divider begge sider med 2s.
g=\frac{\left(v-b\right)\left(v+b\right)}{2s}
Division med 2s annullerer multiplikationen med 2s.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}