Løs for f (complex solution)
\left\{\begin{matrix}f=\frac{r^{n}}{3t}\text{, }&t\neq 0\\f\in \mathrm{C}\text{, }&r=0\text{ and }n\neq 0\text{ and }t=0\end{matrix}\right,
Løs for f
\left\{\begin{matrix}f=\frac{r^{n}}{3t}\text{, }&\left(t\neq 0\text{ and }r>0\right)\text{ or }\left(t\neq 0\text{ and }r=0\text{ and }n>0\right)\text{ or }\left(t\neq 0\text{ and }r<0\text{ and }Denominator(n)\text{bmod}2=1\right)\\f\in \mathrm{R}\text{, }&r=0\text{ and }n>0\text{ and }t=0\end{matrix}\right,
Løs for n (complex solution)
\left\{\begin{matrix}n=\frac{\ln(ft)+\ln(3)}{\ln(r)}+\frac{2\pi n_{1}i}{\ln(r)}\text{, }n_{1}\in \mathrm{Z}\text{, }&t\neq 0\text{ and }f\neq 0\text{ and }r\neq 1\text{ and }r\neq 0\\n\in \mathrm{C}\text{, }&\left(r=0\text{ and }f=0\right)\text{ or }\left(r=0\text{ and }t=0\right)\text{ or }\left(r=1\text{ and }f=\frac{1}{3t}\text{ and }t\neq 0\right)\end{matrix}\right,
Løs for n
\left\{\begin{matrix}n=\frac{\ln(ft)+\ln(3)}{\ln(r)}\text{, }&\left(f<0\text{ and }t<0\text{ and }r\neq 1\text{ and }r>0\right)\text{ or }\left(f>0\text{ and }t>0\text{ and }r\neq 1\text{ and }r>0\right)\\n\in \mathrm{R}\text{, }&\left(r=1\text{ and }f=\frac{1}{3t}\text{ and }t\neq 0\right)\text{ or }\left(r=-1\text{ and }f=-\frac{1}{3t}\text{ and }t\neq 0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\right)\\n>0\text{, }&\left(r=0\text{ and }f=0\right)\text{ or }\left(r=0\text{ and }t=0\right)\end{matrix}\right,
Aktie
Kopieret til udklipsholder
3ft=r^{n}
Skift side, så alle variable led er placeret på venstre side.
3tf=r^{n}
Ligningen er nu i standardform.
\frac{3tf}{3t}=\frac{r^{n}}{3t}
Divider begge sider med 3t.
f=\frac{r^{n}}{3t}
Division med 3t annullerer multiplikationen med 3t.
3ft=r^{n}
Skift side, så alle variable led er placeret på venstre side.
3tf=r^{n}
Ligningen er nu i standardform.
\frac{3tf}{3t}=\frac{r^{n}}{3t}
Divider begge sider med 3t.
f=\frac{r^{n}}{3t}
Division med 3t annullerer multiplikationen med 3t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}