Spring videre til hovedindholdet
Løs for b
Tick mark Image

Lignende problemer fra websøgning

Aktie

b^{2}-11b+24=0
Tilføj 24 på begge sider.
a+b=-11 ab=24
Faktor b^{2}-11b+24 ved hjælp af formel b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right) for at løse ligningen. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
-1,-24 -2,-12 -3,-8 -4,-6
Da ab er positivt, skal a og b have samme fortegn. Da a+b er negative, er a og b begge negative. Vis alle disse heltals par, der giver produkt 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Beregn summen af hvert par.
a=-8 b=-3
Løsningen er det par, der får summen -11.
\left(b-8\right)\left(b-3\right)
Omskriv det faktoriserede udtryk \left(b+a\right)\left(b+b\right) ved hjælp af de opnåede værdier.
b=8 b=3
Løs b-8=0 og b-3=0 for at finde Lignings løsninger.
b^{2}-11b+24=0
Tilføj 24 på begge sider.
a+b=-11 ab=1\times 24=24
Hvis du vil løse ligningen, skal du faktor venstre side ved at gruppere. For det første skal venstre side ikke skrives som b^{2}+ab+bb+24. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
-1,-24 -2,-12 -3,-8 -4,-6
Da ab er positivt, skal a og b have samme fortegn. Da a+b er negative, er a og b begge negative. Vis alle disse heltals par, der giver produkt 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Beregn summen af hvert par.
a=-8 b=-3
Løsningen er det par, der får summen -11.
\left(b^{2}-8b\right)+\left(-3b+24\right)
Omskriv b^{2}-11b+24 som \left(b^{2}-8b\right)+\left(-3b+24\right).
b\left(b-8\right)-3\left(b-8\right)
Udb i den første og -3 i den anden gruppe.
\left(b-8\right)\left(b-3\right)
Udfaktoriser fællesleddet b-8 ved hjælp af fordelingsegenskaben.
b=8 b=3
Løs b-8=0 og b-3=0 for at finde Lignings løsninger.
b^{2}-11b=-24
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
b^{2}-11b-\left(-24\right)=-24-\left(-24\right)
Adder 24 på begge sider af ligningen.
b^{2}-11b-\left(-24\right)=0
Hvis -24 subtraheres fra sig selv, giver det 0.
b^{2}-11b+24=0
Subtraher -24 fra 0.
b=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -11 med b og 24 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
Kvadrér -11.
b=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
Multiplicer -4 gange 24.
b=\frac{-\left(-11\right)±\sqrt{25}}{2}
Adder 121 til -96.
b=\frac{-\left(-11\right)±5}{2}
Tag kvadratroden af 25.
b=\frac{11±5}{2}
Det modsatte af -11 er 11.
b=\frac{16}{2}
Nu skal du løse ligningen, b=\frac{11±5}{2} når ± er plus. Adder 11 til 5.
b=8
Divider 16 med 2.
b=\frac{6}{2}
Nu skal du løse ligningen, b=\frac{11±5}{2} når ± er minus. Subtraher 5 fra 11.
b=3
Divider 6 med 2.
b=8 b=3
Ligningen er nu løst.
b^{2}-11b=-24
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
b^{2}-11b+\left(-\frac{11}{2}\right)^{2}=-24+\left(-\frac{11}{2}\right)^{2}
Divider -11, som er koefficienten for leddet x, med 2 for at få -\frac{11}{2}. Adder derefter kvadratet af -\frac{11}{2} på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
b^{2}-11b+\frac{121}{4}=-24+\frac{121}{4}
Du kan kvadrere -\frac{11}{2} ved at kvadrere både tælleren og nævneren i brøken.
b^{2}-11b+\frac{121}{4}=\frac{25}{4}
Adder -24 til \frac{121}{4}.
\left(b-\frac{11}{2}\right)^{2}=\frac{25}{4}
Faktor b^{2}-11b+\frac{121}{4}. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(b-\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tag kvadratroden af begge sider i ligningen.
b-\frac{11}{2}=\frac{5}{2} b-\frac{11}{2}=-\frac{5}{2}
Forenkling.
b=8 b=3
Adder \frac{11}{2} på begge sider af ligningen.