Spring videre til hovedindholdet
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

-x^{2}+5x-6
Omarranger polynomiet for at placere det i standardformlen. Placer leddene i rækkefølge fra højeste til laveste potens.
a+b=5 ab=-\left(-6\right)=6
Faktoriser udtrykket ved gruppering. Først skal udtrykket omskrives som -x^{2}+ax+bx-6. Hvis du vil finde a og b, skal du konfigurere et system, der skal løses.
1,6 2,3
Da ab er positivt, skal a og b have samme fortegn. Da a+b er positivt, er a og b begge positive. Vis alle disse heltals par, der giver produkt 6.
1+6=7 2+3=5
Beregn summen af hvert par.
a=3 b=2
Løsningen er det par, der får summen 5.
\left(-x^{2}+3x\right)+\left(2x-6\right)
Omskriv -x^{2}+5x-6 som \left(-x^{2}+3x\right)+\left(2x-6\right).
-x\left(x-3\right)+2\left(x-3\right)
Ud-x i den første og 2 i den anden gruppe.
\left(x-3\right)\left(-x+2\right)
Udfaktoriser fællesleddet x-3 ved hjælp af fordelingsegenskaben.
-x^{2}+5x-6=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Kvadrér 5.
x=\frac{-5±\sqrt{25+4\left(-6\right)}}{2\left(-1\right)}
Multiplicer -4 gange -1.
x=\frac{-5±\sqrt{25-24}}{2\left(-1\right)}
Multiplicer 4 gange -6.
x=\frac{-5±\sqrt{1}}{2\left(-1\right)}
Adder 25 til -24.
x=\frac{-5±1}{2\left(-1\right)}
Tag kvadratroden af 1.
x=\frac{-5±1}{-2}
Multiplicer 2 gange -1.
x=-\frac{4}{-2}
Nu skal du løse ligningen, x=\frac{-5±1}{-2} når ± er plus. Adder -5 til 1.
x=2
Divider -4 med -2.
x=-\frac{6}{-2}
Nu skal du løse ligningen, x=\frac{-5±1}{-2} når ± er minus. Subtraher 1 fra -5.
x=3
Divider -6 med -2.
-x^{2}+5x-6=-\left(x-2\right)\left(x-3\right)
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat 2 med x_{1} og 3 med x_{2}.