Løs for x
x=3
x=-1
Graf
Aktie
Kopieret til udklipsholder
4=\left(x-1\right)^{2}
Multiplicer x-1 og x-1 for at få \left(x-1\right)^{2}.
4=x^{2}-2x+1
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-1\right)^{2}.
x^{2}-2x+1=4
Skift side, så alle variable led er placeret på venstre side.
x^{2}-2x+1-4=0
Subtraher 4 fra begge sider.
x^{2}-2x-3=0
Subtraher 4 fra 1 for at få -3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, -2 med b og -3 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Kvadrér -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Multiplicer -4 gange -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Adder 4 til 12.
x=\frac{-\left(-2\right)±4}{2}
Tag kvadratroden af 16.
x=\frac{2±4}{2}
Det modsatte af -2 er 2.
x=\frac{6}{2}
Nu skal du løse ligningen, x=\frac{2±4}{2} når ± er plus. Adder 2 til 4.
x=3
Divider 6 med 2.
x=-\frac{2}{2}
Nu skal du løse ligningen, x=\frac{2±4}{2} når ± er minus. Subtraher 4 fra 2.
x=-1
Divider -2 med 2.
x=3 x=-1
Ligningen er nu løst.
4=\left(x-1\right)^{2}
Multiplicer x-1 og x-1 for at få \left(x-1\right)^{2}.
4=x^{2}-2x+1
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-1\right)^{2}.
x^{2}-2x+1=4
Skift side, så alle variable led er placeret på venstre side.
\left(x-1\right)^{2}=4
Faktor x^{2}-2x+1. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tag kvadratroden af begge sider i ligningen.
x-1=2 x-1=-2
Forenkling.
x=3 x=-1
Adder 1 på begge sider af ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}