Faktoriser
t\left(4t-3\right)
Evaluer
t\left(4t-3\right)
Aktie
Kopieret til udklipsholder
t\left(4t-3\right)
Udfaktoriser t.
4t^{2}-3t=0
Kvadratisk polynomium kan faktoriseres ved hjælp af transformeringen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), hvor x_{1} og x_{2} er løsninger af den kvadratiske ligning ax^{2}+bx+c=0.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 4}
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
t=\frac{-\left(-3\right)±3}{2\times 4}
Tag kvadratroden af \left(-3\right)^{2}.
t=\frac{3±3}{2\times 4}
Det modsatte af -3 er 3.
t=\frac{3±3}{8}
Multiplicer 2 gange 4.
t=\frac{6}{8}
Nu skal du løse ligningen, t=\frac{3±3}{8} når ± er plus. Adder 3 til 3.
t=\frac{3}{4}
Reducer fraktionen \frac{6}{8} til de laveste led ved at udtrække og annullere 2.
t=\frac{0}{8}
Nu skal du løse ligningen, t=\frac{3±3}{8} når ± er minus. Subtraher 3 fra 3.
t=0
Divider 0 med 8.
4t^{2}-3t=4\left(t-\frac{3}{4}\right)t
Faktoriser det oprindelige udtryk ved hjælp af ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstat \frac{3}{4} med x_{1} og 0 med x_{2}.
4t^{2}-3t=4\times \frac{4t-3}{4}t
Subtraher \frac{3}{4} fra t ved at finde en fællesnævner og subtrahere tællerne. Reducer derefter brøken til de lavest mulige led, hvis det er muligt.
4t^{2}-3t=\left(4t-3\right)t
Ophæv den største fælles faktor 4 i 4 og 4.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}