Løs for K
K=\frac{3\tan(x)}{5}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
Løs for x
x=\pi +2n_{3}\pi +arcSin(5K\left(25K^{2}+9\right)^{-\frac{1}{2}})\text{, }n_{3}\in \mathrm{Z}\text{, }\exists n_{50}\in \mathrm{Z}\text{ : }\left(n_{3}>\left(-\frac{1}{2}\right)\left(\frac{1}{2}\pi +arcSin(5K\left(25K^{2}+9\right)^{-\frac{1}{2}})+\left(-1\right)\pi n_{50}\right)\pi ^{-1}\text{ and }n_{3}<\left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)\pi +arcSin(5K\left(25K^{2}+9\right)^{-\frac{1}{2}})+\left(-1\right)\pi n_{50}\right)\pi ^{-1}\right)
x=arcSin(5K\left(25K^{2}+9\right)^{-\frac{1}{2}})+2\pi n_{26}\text{, }n_{26}\in \mathrm{Z}\text{, }\exists n_{50}\in \mathrm{Z}\text{ : }\left(n_{50}<\pi ^{-1}\left(arcSin(5K\left(25K^{2}+9\right)^{-\frac{1}{2}})+2\pi n_{26}+\left(-\frac{1}{2}\right)\pi \right)\text{ and }n_{50}>\left(arcSin(5K\left(25K^{2}+9\right)^{-\frac{1}{2}})+2\pi n_{26}+\left(-\frac{3}{2}\right)\pi \right)\pi ^{-1}\right)
Graf
Aktie
Kopieret til udklipsholder
5K=3\tan(x)
Skift side, så alle variable led er placeret på venstre side.
\frac{5K}{5}=\frac{3\tan(x)}{5}
Divider begge sider med 5.
K=\frac{3\tan(x)}{5}
Division med 5 annullerer multiplikationen med 5.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}