Spring videre til hovedindholdet
Evaluer
Tick mark Image
Differentier w.r.t. x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplicer x og x for at få x^{2}.
-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Beregn 10 til potensen af -11, og få \frac{1}{100000000000}.
-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplicer -667 og \frac{1}{100000000000} for at få -\frac{667}{100000000000}.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}}
Udlign 3 i både tælleren og nævneren.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000}
Beregn 10 til potensen af 8, og få 100000000.
-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000}
Multiplicer 5 og 100000000 for at få 500000000.
-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2}
Divider 6x^{2} med 500000000 for at få \frac{3}{250000000}x^{2}.
-\frac{2001}{25000000000000000000}x^{2}
Multiplicer -\frac{667}{100000000000} og \frac{3}{250000000} for at få -\frac{2001}{25000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplicer x og x for at få x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Beregn 10 til potensen af -11, og få \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplicer -667 og \frac{1}{100000000000} for at få -\frac{667}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}})
Udlign 3 i både tælleren og nævneren.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000})
Beregn 10 til potensen af 8, og få 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000})
Multiplicer 5 og 100000000 for at få 500000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2})
Divider 6x^{2} med 500000000 for at få \frac{3}{250000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{25000000000000000000}x^{2})
Multiplicer -\frac{667}{100000000000} og \frac{3}{250000000} for at få -\frac{2001}{25000000000000000000}.
2\left(-\frac{2001}{25000000000000000000}\right)x^{2-1}
Afledningen af ax^{n} er nax^{n-1}.
-\frac{2001}{12500000000000000000}x^{2-1}
Multiplicer 2 gange -\frac{2001}{25000000000000000000}.
-\frac{2001}{12500000000000000000}x^{1}
Subtraher 1 fra 2.
-\frac{2001}{12500000000000000000}x
For ethvert led t, t^{1}=t.