Løs for v
v = -\frac{43}{5} = -8\frac{3}{5} = -8,6
Aktie
Kopieret til udklipsholder
-5\left(v+7\right)=8
Variablen v må ikke være lig med -7, fordi division med nul ikke er defineret. Multiplicer begge sider af ligningen med v+7.
-5v-35=8
Brug fordelingsegenskaben til at multiplicere -5 med v+7.
-5v=8+35
Tilføj 35 på begge sider.
-5v=43
Tilføj 8 og 35 for at få 43.
v=\frac{43}{-5}
Divider begge sider med -5.
v=-\frac{43}{5}
Brøken \frac{43}{-5} kan omskrives som -\frac{43}{5} ved at fratrække det negative fortegn.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}