Løs for x
x=\frac{355}{648}\approx 0,547839506
Graf
Aktie
Kopieret til udklipsholder
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{2}{5}x-1\right)\left(2-x\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Brug binomialsætningen \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} til at udvide \left(x-\frac{1}{3}\right)^{3}.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\left(\frac{9}{5}x-\frac{2}{5}x^{2}-2\right)-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Brug fordelingsegenskaben til at multiplicere \frac{2}{5}x-1 med 2-x, og kombiner ens led.
x^{3}-x^{2}+\frac{1}{3}x-\frac{1}{27}-\frac{9}{5}x+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
For at finde det modsatte af \frac{9}{5}x-\frac{2}{5}x^{2}-2 skal du finde det modsatte af hvert led.
x^{3}-x^{2}-\frac{22}{15}x-\frac{1}{27}+\frac{2}{5}x^{2}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombiner \frac{1}{3}x og -\frac{9}{5}x for at få -\frac{22}{15}x.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x-\frac{1}{27}+2-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombiner -x^{2} og \frac{2}{5}x^{2} for at få -\frac{3}{5}x^{2}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-x\left(\frac{2}{5}x+3\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Tilføj -\frac{1}{27} og 2 for at få \frac{53}{27}.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\left(\frac{2}{5}x^{2}+3x\right)=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Brug fordelingsegenskaben til at multiplicere x med \frac{2}{5}x+3.
x^{3}-\frac{3}{5}x^{2}-\frac{22}{15}x+\frac{53}{27}-\frac{2}{5}x^{2}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
For at finde det modsatte af \frac{2}{5}x^{2}+3x skal du finde det modsatte af hvert led.
x^{3}-x^{2}-\frac{22}{15}x+\frac{53}{27}-3x=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombiner -\frac{3}{5}x^{2} og -\frac{2}{5}x^{2} for at få -x^{2}.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{2}\left(x-1\right)-\frac{1}{3}\left(2-x\right)
Kombiner -\frac{22}{15}x og -3x for at få -\frac{67}{15}x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{1}{3}\left(2-x\right)
Brug fordelingsegenskaben til at multiplicere x^{2} med x-1.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}=x^{3}-x^{2}-\frac{2}{3}+\frac{1}{3}x
Brug fordelingsegenskaben til at multiplicere -\frac{1}{3} med 2-x.
x^{3}-x^{2}-\frac{67}{15}x+\frac{53}{27}-x^{3}=-x^{2}-\frac{2}{3}+\frac{1}{3}x
Subtraher x^{3} fra begge sider.
-x^{2}-\frac{67}{15}x+\frac{53}{27}=-x^{2}-\frac{2}{3}+\frac{1}{3}x
Kombiner x^{3} og -x^{3} for at få 0.
-x^{2}-\frac{67}{15}x+\frac{53}{27}+x^{2}=-\frac{2}{3}+\frac{1}{3}x
Tilføj x^{2} på begge sider.
-\frac{67}{15}x+\frac{53}{27}=-\frac{2}{3}+\frac{1}{3}x
Kombiner -x^{2} og x^{2} for at få 0.
-\frac{67}{15}x+\frac{53}{27}-\frac{1}{3}x=-\frac{2}{3}
Subtraher \frac{1}{3}x fra begge sider.
-\frac{24}{5}x+\frac{53}{27}=-\frac{2}{3}
Kombiner -\frac{67}{15}x og -\frac{1}{3}x for at få -\frac{24}{5}x.
-\frac{24}{5}x=-\frac{2}{3}-\frac{53}{27}
Subtraher \frac{53}{27} fra begge sider.
-\frac{24}{5}x=-\frac{71}{27}
Subtraher \frac{53}{27} fra -\frac{2}{3} for at få -\frac{71}{27}.
x=-\frac{71}{27}\left(-\frac{5}{24}\right)
Multiplicer begge sider med -\frac{5}{24}, den reciprokke af -\frac{24}{5}.
x=\frac{355}{648}
Multiplicer -\frac{71}{27} og -\frac{5}{24} for at få \frac{355}{648}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}