Spring videre til hovedindholdet
Løs for x
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

x^{2}-\sqrt{2}-1+\sqrt{2}=0
For at finde det modsatte af \sqrt{2}+1 skal du finde det modsatte af hvert led.
x^{2}-1=0
Kombiner -\sqrt{2} og \sqrt{2} for at få 0.
\left(x-1\right)\left(x+1\right)=0
Overvej x^{2}-1. Omskriv x^{2}-1 som x^{2}-1^{2}. Forskellen mellem kvadraterne kan faktoriseres ved hjælp af reglen: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
Løs x-1=0 og x+1=0 for at finde Lignings løsninger.
x^{2}-\sqrt{2}-1+\sqrt{2}=0
For at finde det modsatte af \sqrt{2}+1 skal du finde det modsatte af hvert led.
x^{2}-1=0
Kombiner -\sqrt{2} og \sqrt{2} for at få 0.
x^{2}=1
Tilføj 1 på begge sider. Ethvert tal plus nul giver tallet selv.
x=1 x=-1
Tag kvadratroden af begge sider i ligningen.
x^{2}-\sqrt{2}-1+\sqrt{2}=0
For at finde det modsatte af \sqrt{2}+1 skal du finde det modsatte af hvert led.
x^{2}-1=0
Kombiner -\sqrt{2} og \sqrt{2} for at få 0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, 0 med b og -1 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)}}{2}
Kvadrér 0.
x=\frac{0±\sqrt{4}}{2}
Multiplicer -4 gange -1.
x=\frac{0±2}{2}
Tag kvadratroden af 4.
x=1
Nu skal du løse ligningen, x=\frac{0±2}{2} når ± er plus. Divider 2 med 2.
x=-1
Nu skal du løse ligningen, x=\frac{0±2}{2} når ± er minus. Divider -2 med 2.
x=1 x=-1
Ligningen er nu løst.