Løs for x (complex solution)
x=\frac{-19+\sqrt{39}i}{2}\approx -9,5+3,122498999i
x=\frac{-\sqrt{39}i-19}{2}\approx -9,5-3,122498999i
Graf
Aktie
Kopieret til udklipsholder
x^{2}+19x+100=0
Alle ligninger i formatet ax^{2}+bx+c=0 kan løses ved hjælp af den kvadratiske formel: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formel giver to løsninger: Én løsning, når ± er addition, og én anden løsning, når det er subtraktion.
x=\frac{-19±\sqrt{19^{2}-4\times 100}}{2}
Denne ligning er i standardform: ax^{2}+bx+c=0. Erstat 1 med a, 19 med b og 100 med c i den kvadratiske formel \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\times 100}}{2}
Kvadrér 19.
x=\frac{-19±\sqrt{361-400}}{2}
Multiplicer -4 gange 100.
x=\frac{-19±\sqrt{-39}}{2}
Adder 361 til -400.
x=\frac{-19±\sqrt{39}i}{2}
Tag kvadratroden af -39.
x=\frac{-19+\sqrt{39}i}{2}
Nu skal du løse ligningen, x=\frac{-19±\sqrt{39}i}{2} når ± er plus. Adder -19 til i\sqrt{39}.
x=\frac{-\sqrt{39}i-19}{2}
Nu skal du løse ligningen, x=\frac{-19±\sqrt{39}i}{2} når ± er minus. Subtraher i\sqrt{39} fra -19.
x=\frac{-19+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-19}{2}
Ligningen er nu løst.
x^{2}+19x+100=0
Kvadratligninger som denne kan løses ved at fuldføre kvadratet. Ligningen skal først være i formlen x^{2}+bx=c for at fuldføre kvadratet.
x^{2}+19x+100-100=-100
Subtraher 100 fra begge sider af ligningen.
x^{2}+19x=-100
Hvis 100 subtraheres fra sig selv, giver det 0.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=-100+\left(\frac{19}{2}\right)^{2}
Divider 19, som er koefficienten for leddet x, med 2 for at få \frac{19}{2}. Adder derefter kvadratet af \frac{19}{2} på begge sider af ligningen. Dette trin gør venstre side af ligningen til et perfekt kvadrat.
x^{2}+19x+\frac{361}{4}=-100+\frac{361}{4}
Du kan kvadrere \frac{19}{2} ved at kvadrere både tælleren og nævneren i brøken.
x^{2}+19x+\frac{361}{4}=-\frac{39}{4}
Adder -100 til \frac{361}{4}.
\left(x+\frac{19}{2}\right)^{2}=-\frac{39}{4}
Faktor x^{2}+19x+\frac{361}{4}. Generelt kan det altid faktoreres som \left(x+\frac{b}{2}\right)^{2}, når x^{2}+bx+c er et perfekt kvadrat.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{-\frac{39}{4}}
Tag kvadratroden af begge sider i ligningen.
x+\frac{19}{2}=\frac{\sqrt{39}i}{2} x+\frac{19}{2}=-\frac{\sqrt{39}i}{2}
Forenkling.
x=\frac{-19+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-19}{2}
Subtraher \frac{19}{2} fra begge sider af ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}