Spring videre til hovedindholdet
Evaluer
Tick mark Image

Lignende problemer fra websøgning

Aktie

\int _{-2}^{5}64x^{3}-144x^{2}+108x-27\mathrm{d}x
Brug binomialsætningen \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} til at udvide \left(4x-3\right)^{3}.
\int 64x^{3}-144x^{2}+108x-27\mathrm{d}x
Evaluer den ubestemte integral først.
\int 64x^{3}\mathrm{d}x+\int -144x^{2}\mathrm{d}x+\int 108x\mathrm{d}x+\int -27\mathrm{d}x
Integrer summen ord for ord.
64\int x^{3}\mathrm{d}x-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Udfaktoriser konstanten i hver af ordene.
16x^{4}-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x^{3}\mathrm{d}x med \frac{x^{4}}{4}. Multiplicer 64 gange \frac{x^{4}}{4}.
16x^{4}-48x^{3}+108\int x\mathrm{d}x+\int -27\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x^{2}\mathrm{d}x med \frac{x^{3}}{3}. Multiplicer -144 gange \frac{x^{3}}{3}.
16x^{4}-48x^{3}+54x^{2}+\int -27\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} til k\neq -1, skal du erstatte \int x\mathrm{d}x med \frac{x^{2}}{2}. Multiplicer 108 gange \frac{x^{2}}{2}.
16x^{4}-48x^{3}+54x^{2}-27x
Find integralen af -27 ved hjælp af tabellen med almindelige integraler for \int a\mathrm{d}x=ax.
16\times 5^{4}-48\times 5^{3}+54\times 5^{2}-27\times 5-\left(16\left(-2\right)^{4}-48\left(-2\right)^{3}+54\left(-2\right)^{2}-27\left(-2\right)\right)
Den definitive integral er antiafledningen af udtrykket evalueret ved den øvre integrationsgrænse minus antiafledningen evalueret ved den nedre integrationsgrænse.
4305
Forenkling.