Løs for x
x=-1
Graf
Aktie
Kopieret til udklipsholder
3\left(x+3\right)-3\left(x+2\right)-4=2\left(x-4\right)-9x
Gang begge sider af ligningen med 6, det mindste fælles multiplum af 2,6,3.
3x+9-3\left(x+2\right)-4=2\left(x-4\right)-9x
Brug fordelingsegenskaben til at multiplicere 3 med x+3.
3x+9-3x-6-4=2\left(x-4\right)-9x
Brug fordelingsegenskaben til at multiplicere -3 med x+2.
9-6-4=2\left(x-4\right)-9x
Kombiner 3x og -3x for at få 0.
3-4=2\left(x-4\right)-9x
Subtraher 6 fra 9 for at få 3.
-1=2\left(x-4\right)-9x
Subtraher 4 fra 3 for at få -1.
-1=2x-8-9x
Brug fordelingsegenskaben til at multiplicere 2 med x-4.
-1=-7x-8
Kombiner 2x og -9x for at få -7x.
-7x-8=-1
Skift side, så alle variable led er placeret på venstre side.
-7x=-1+8
Tilføj 8 på begge sider.
-7x=7
Tilføj -1 og 8 for at få 7.
x=\frac{7}{-7}
Divider begge sider med -7.
x=-1
Divider 7 med -7 for at få -1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}