Løs for b_5
b_{5}=16a^{2}+\frac{4}{a^{2}}
a\neq 0
Løs for a (complex solution)
a=\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=-\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=-\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
Løs for a
a=-\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=\frac{\sqrt{2\left(-\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}
a=-\frac{\sqrt{2\left(\sqrt{b_{5}^{2}-256}+b_{5}\right)}}{8}\text{, }b_{5}\geq 16
Aktie
Kopieret til udklipsholder
16-4\left(\frac{b_{5}}{16a^{2}}-1\right)\times 16a^{4}=0
Gang begge sider af ligningen med 16a^{4}, det mindste fælles multiplum af a^{4},16a^{2}.
16-4\left(\frac{b_{5}}{16a^{2}}-\frac{16a^{2}}{16a^{2}}\right)\times 16a^{4}=0
For tilføje eller fratrække udtryk skal du udvide dem for at gøre nævneren ens. Multiplicer 1 gange \frac{16a^{2}}{16a^{2}}.
16-4\times \frac{b_{5}-16a^{2}}{16a^{2}}\times 16a^{4}=0
Eftersom \frac{b_{5}}{16a^{2}} og \frac{16a^{2}}{16a^{2}} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
16-64\times \frac{b_{5}-16a^{2}}{16a^{2}}a^{4}=0
Multiplicer 4 og 16 for at få 64.
16-\frac{64\left(b_{5}-16a^{2}\right)}{16a^{2}}a^{4}=0
Udtryk 64\times \frac{b_{5}-16a^{2}}{16a^{2}} som en enkelt brøk.
16-\frac{4\left(-16a^{2}+b_{5}\right)}{a^{2}}a^{4}=0
Udlign 16 i både tælleren og nævneren.
16-\frac{4\left(-16a^{2}+b_{5}\right)a^{4}}{a^{2}}=0
Udtryk \frac{4\left(-16a^{2}+b_{5}\right)}{a^{2}}a^{4} som en enkelt brøk.
16-4a^{2}\left(-16a^{2}+b_{5}\right)=0
Udlign a^{2} i både tælleren og nævneren.
16+64a^{4}-4a^{2}b_{5}=0
Brug fordelingsegenskaben til at multiplicere -4a^{2} med -16a^{2}+b_{5}.
64a^{4}-4a^{2}b_{5}=-16
Subtraher 16 fra begge sider. Ethvert tal trukket fra nul giver tallets negation.
-4a^{2}b_{5}=-16-64a^{4}
Subtraher 64a^{4} fra begge sider.
\left(-4a^{2}\right)b_{5}=-64a^{4}-16
Ligningen er nu i standardform.
\frac{\left(-4a^{2}\right)b_{5}}{-4a^{2}}=\frac{-64a^{4}-16}{-4a^{2}}
Divider begge sider med -4a^{2}.
b_{5}=\frac{-64a^{4}-16}{-4a^{2}}
Division med -4a^{2} annullerer multiplikationen med -4a^{2}.
b_{5}=16a^{2}+\frac{4}{a^{2}}
Divider -16-64a^{4} med -4a^{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}