Spring videre til hovedindholdet
Evaluer
Tick mark Image
Udvid
Tick mark Image

Lignende problemer fra websøgning

Aktie

\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} til at udvide \left(a-2b\right)^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til at udvide \left(a-2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til at udvide \left(a+2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug fordelingsegenskaben til at multiplicere a^{2}-4a+4 med a^{2}+4a+4, og kombiner ens led.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner -8a^{2} og 4a^{2} for at få -4a^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til at udvide \left(2-a^{2}\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
For at finde det modsatte af 4-4a^{2}+a^{4} skal du finde det modsatte af hvert led.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Subtraher 4 fra 16 for at få 12.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner -4a^{2} og 4a^{2} for at få 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner a^{4} og -a^{4} for at få 0.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Multiplicer \frac{1}{36} og 12 for at få \frac{1}{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{3} med a^{3}-6a^{2}b+12ab^{2}-8b^{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug fordelingsegenskaben til at multiplicere ab med \frac{11}{3}b-a.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
For at finde det modsatte af \frac{11}{3}ab^{2}-ba^{2} skal du finde det modsatte af hvert led.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner 4ab^{2} og -\frac{11}{3}ab^{2} for at få \frac{1}{3}ab^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner -2a^{2}b og ba^{2} for at få -a^{2}b.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{3}a-b med b^{2}+a^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
For at finde det modsatte af \frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} skal du finde det modsatte af hvert led.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Kombiner \frac{1}{3}ab^{2} og -\frac{1}{3}ab^{2} for at få 0.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Kombiner \frac{1}{3}a^{3} og -\frac{1}{3}a^{3} for at få 0.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Kombiner -\frac{8}{3}b^{3} og b^{3} for at få -\frac{5}{3}b^{3}.
-\frac{5}{3}b^{3}
Kombiner -a^{2}b og ba^{2} for at få 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} til at udvide \left(a-2b\right)^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til at udvide \left(a-2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p+q\right)^{2}=p^{2}+2pq+q^{2} til at udvide \left(a+2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug fordelingsegenskaben til at multiplicere a^{2}-4a+4 med a^{2}+4a+4, og kombiner ens led.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner -8a^{2} og 4a^{2} for at få -4a^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug binomialsætningen \left(p-q\right)^{2}=p^{2}-2pq+q^{2} til at udvide \left(2-a^{2}\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
For at hæve en potens til en anden potens, skal du gange eksponenterne. Gang 2 og 2 for at få 4.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
For at finde det modsatte af 4-4a^{2}+a^{4} skal du finde det modsatte af hvert led.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Subtraher 4 fra 16 for at få 12.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner -4a^{2} og 4a^{2} for at få 0.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner a^{4} og -a^{4} for at få 0.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Multiplicer \frac{1}{36} og 12 for at få \frac{1}{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{3} med a^{3}-6a^{2}b+12ab^{2}-8b^{3}.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Brug fordelingsegenskaben til at multiplicere ab med \frac{11}{3}b-a.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
For at finde det modsatte af \frac{11}{3}ab^{2}-ba^{2} skal du finde det modsatte af hvert led.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner 4ab^{2} og -\frac{11}{3}ab^{2} for at få \frac{1}{3}ab^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Kombiner -2a^{2}b og ba^{2} for at få -a^{2}b.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{3}a-b med b^{2}+a^{2}.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
For at finde det modsatte af \frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} skal du finde det modsatte af hvert led.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
Kombiner \frac{1}{3}ab^{2} og -\frac{1}{3}ab^{2} for at få 0.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
Kombiner \frac{1}{3}a^{3} og -\frac{1}{3}a^{3} for at få 0.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
Kombiner -\frac{8}{3}b^{3} og b^{3} for at få -\frac{5}{3}b^{3}.
-\frac{5}{3}b^{3}
Kombiner -a^{2}b og ba^{2} for at få 0.