Spring videre til hovedindholdet
Evaluer
Tick mark Image
Udvid
Tick mark Image
Graf

Lignende problemer fra websøgning

Aktie

\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{2}x med 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere 3 med x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere 3x+3 med x-1, og kombiner ens led.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner -\frac{1}{2}x^{2} og 3x^{2} for at få \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere x med x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
For at finde det modsatte af x^{3}-2x^{2}+x skal du finde det modsatte af hvert led.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{5}{2}x^{2} og 2x^{2} for at få \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{3}{2}x og -x for at få \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Brug binomialsætningen \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} til at udvide \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner -x^{3} og x^{3} for at få 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{9}{2}x^{2} og -3x^{2} for at få \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{1}{2}x og 3x for at få \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
Subtraher 1 fra -3 for at få -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
Brug fordelingsegenskaben til at multiplicere -\frac{1}{2} med 2x-8.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
Kombiner \frac{7}{2}x og -x for at få \frac{5}{2}x.
\frac{5}{2}x+\frac{3}{2}x^{2}
Tilføj -4 og 4 for at få 0.
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere \frac{1}{2}x med 3-x.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere 3 med x+1.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere 3x+3 med x-1, og kombiner ens led.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner -\frac{1}{2}x^{2} og 3x^{2} for at få \frac{5}{2}x^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug binomialsætningen \left(a-b\right)^{2}=a^{2}-2ab+b^{2} til at udvide \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Brug fordelingsegenskaben til at multiplicere x med x^{2}-2x+1.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
For at finde det modsatte af x^{3}-2x^{2}+x skal du finde det modsatte af hvert led.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{5}{2}x^{2} og 2x^{2} for at få \frac{9}{2}x^{2}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{3}{2}x og -x for at få \frac{1}{2}x.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Brug binomialsætningen \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} til at udvide \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner -x^{3} og x^{3} for at få 0.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{9}{2}x^{2} og -3x^{2} for at få \frac{3}{2}x^{2}.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
Kombiner \frac{1}{2}x og 3x for at få \frac{7}{2}x.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
Subtraher 1 fra -3 for at få -4.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
Brug fordelingsegenskaben til at multiplicere -\frac{1}{2} med 2x-8.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
Kombiner \frac{7}{2}x og -x for at få \frac{5}{2}x.
\frac{5}{2}x+\frac{3}{2}x^{2}
Tilføj -4 og 4 for at få 0.