Evaluer
\frac{196}{65}\approx 3,015384615
Faktoriser
\frac{2 ^ {2} \cdot 7 ^ {2}}{5 \cdot 13} = 3\frac{1}{65} = 3,0153846153846153
Aktie
Kopieret til udklipsholder
\frac{\left(\frac{4\times 3+2}{3}+0\times 75\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Divider \frac{\left(\frac{4\times 3+2}{3}+0\times 75\right)\times \frac{3\times 13+9}{13}}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}} med \frac{34\times 7+2}{7} ved at multiplicere \frac{\left(\frac{4\times 3+2}{3}+0\times 75\right)\times \frac{3\times 13+9}{13}}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}} med den reciprokke værdi af \frac{34\times 7+2}{7}.
\frac{\left(\frac{12+2}{3}+0\times 75\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiplicer 4 og 3 for at få 12.
\frac{\left(\frac{14}{3}+0\times 75\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Tilføj 12 og 2 for at få 14.
\frac{\left(\frac{14}{3}+0\right)\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiplicer 0 og 75 for at få 0.
\frac{\frac{14}{3}\times \frac{3\times 13+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Tilføj \frac{14}{3} og 0 for at få \frac{14}{3}.
\frac{\frac{14}{3}\times \frac{39+9}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiplicer 3 og 13 for at få 39.
\frac{\frac{14}{3}\times \frac{48}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Tilføj 39 og 9 for at få 48.
\frac{\frac{14\times 48}{3\times 13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiplicer \frac{14}{3} gange \frac{48}{13} ved at multiplicere tæller gange tæller og nævner gange nævner.
\frac{\frac{672}{39}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Udfør multiplicationerne i fraktionen \frac{14\times 48}{3\times 13}.
\frac{\frac{224}{13}\times 7}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Reducer fraktionen \frac{672}{39} til de laveste led ved at udtrække og annullere 3.
\frac{\frac{224\times 7}{13}}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Udtryk \frac{224}{13}\times 7 som en enkelt brøk.
\frac{\frac{1568}{13}}{\frac{\frac{5\times 45+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiplicer 224 og 7 for at få 1568.
\frac{\frac{1568}{13}}{\frac{\frac{225+4}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiplicer 5 og 45 for at få 225.
\frac{\frac{1568}{13}}{\frac{\frac{229}{45}-\frac{4\times 6+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Tilføj 225 og 4 for at få 229.
\frac{\frac{1568}{13}}{\frac{\frac{229}{45}-\frac{24+1}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Multiplicer 4 og 6 for at få 24.
\frac{\frac{1568}{13}}{\frac{\frac{229}{45}-\frac{25}{6}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Tilføj 24 og 1 for at få 25.
\frac{\frac{1568}{13}}{\frac{\frac{458}{90}-\frac{375}{90}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Mindste fælles multiplum af 45 og 6 er 90. Konverter \frac{229}{45} og \frac{25}{6} til brøken med 90 som nævner.
\frac{\frac{1568}{13}}{\frac{\frac{458-375}{90}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Eftersom \frac{458}{90} og \frac{375}{90} har den samme fællesnævner, kan du trække dem fra dem ved at trække deres tællere fra.
\frac{\frac{1568}{13}}{\frac{\frac{83}{90}}{\frac{5\times 15+8}{15}}\left(34\times 7+2\right)}
Subtraher 375 fra 458 for at få 83.
\frac{\frac{1568}{13}}{\frac{\frac{83}{90}}{\frac{75+8}{15}}\left(34\times 7+2\right)}
Multiplicer 5 og 15 for at få 75.
\frac{\frac{1568}{13}}{\frac{\frac{83}{90}}{\frac{83}{15}}\left(34\times 7+2\right)}
Tilføj 75 og 8 for at få 83.
\frac{\frac{1568}{13}}{\frac{83}{90}\times \frac{15}{83}\left(34\times 7+2\right)}
Divider \frac{83}{90} med \frac{83}{15} ved at multiplicere \frac{83}{90} med den reciprokke værdi af \frac{83}{15}.
\frac{\frac{1568}{13}}{\frac{83\times 15}{90\times 83}\left(34\times 7+2\right)}
Multiplicer \frac{83}{90} gange \frac{15}{83} ved at multiplicere tæller gange tæller og nævner gange nævner.
\frac{\frac{1568}{13}}{\frac{15}{90}\left(34\times 7+2\right)}
Udlign 83 i både tælleren og nævneren.
\frac{\frac{1568}{13}}{\frac{1}{6}\left(34\times 7+2\right)}
Reducer fraktionen \frac{15}{90} til de laveste led ved at udtrække og annullere 15.
\frac{\frac{1568}{13}}{\frac{1}{6}\left(238+2\right)}
Multiplicer 34 og 7 for at få 238.
\frac{\frac{1568}{13}}{\frac{1}{6}\times 240}
Tilføj 238 og 2 for at få 240.
\frac{\frac{1568}{13}}{\frac{240}{6}}
Multiplicer \frac{1}{6} og 240 for at få \frac{240}{6}.
\frac{\frac{1568}{13}}{40}
Divider 240 med 6 for at få 40.
\frac{1568}{13\times 40}
Udtryk \frac{\frac{1568}{13}}{40} som en enkelt brøk.
\frac{1568}{520}
Multiplicer 13 og 40 for at få 520.
\frac{196}{65}
Reducer fraktionen \frac{1568}{520} til de laveste led ved at udtrække og annullere 8.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetik
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ligning
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grænser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}