Datrys ar gyfer z
z=\frac{7}{13}+\frac{4}{13}i\approx 0.538461538+0.307692308i
Rhannu
Copïo i clipfwrdd
z=\frac{-5}{3+4i}+\frac{10z}{3+4i}
Rhannu pob term -5+10z â 3+4i i gael \frac{-5}{3+4i}+\frac{10z}{3+4i}.
z=\frac{-5\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}+\frac{10z}{3+4i}
Lluoswch rifiadur ac enwadur \frac{-5}{3+4i} gyda chyfiau cymhleth yr enwadur 3-4i.
z=\frac{-5\left(3-4i\right)}{3^{2}-4^{2}i^{2}}+\frac{10z}{3+4i}
Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{-5\left(3-4i\right)}{25}+\frac{10z}{3+4i}
Drwy ddiffiniad, i^{2} yw -1. Cyfrifwch yr enwadur.
z=\frac{-5\times 3-5\times \left(-4i\right)}{25}+\frac{10z}{3+4i}
Lluoswch -5 â 3-4i.
z=\frac{-15+20i}{25}+\frac{10z}{3+4i}
Gwnewch y gwaith lluosi yn -5\times 3-5\times \left(-4i\right).
z=-\frac{3}{5}+\frac{4}{5}i+\frac{10z}{3+4i}
Rhannu -15+20i â 25 i gael -\frac{3}{5}+\frac{4}{5}i.
z=-\frac{3}{5}+\frac{4}{5}i+\left(\frac{6}{5}-\frac{8}{5}i\right)z
Rhannu 10z â 3+4i i gael \left(\frac{6}{5}-\frac{8}{5}i\right)z.
z-\left(\frac{6}{5}-\frac{8}{5}i\right)z=-\frac{3}{5}+\frac{4}{5}i
Tynnu \left(\frac{6}{5}-\frac{8}{5}i\right)z o'r ddwy ochr.
\left(-\frac{1}{5}+\frac{8}{5}i\right)z=-\frac{3}{5}+\frac{4}{5}i
Cyfuno z a \left(-\frac{6}{5}+\frac{8}{5}i\right)z i gael \left(-\frac{1}{5}+\frac{8}{5}i\right)z.
z=\frac{-\frac{3}{5}+\frac{4}{5}i}{-\frac{1}{5}+\frac{8}{5}i}
Rhannu’r ddwy ochr â -\frac{1}{5}+\frac{8}{5}i.
z=\frac{\left(-\frac{3}{5}+\frac{4}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}{\left(-\frac{1}{5}+\frac{8}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}
Lluoswch rifiadur ac enwadur \frac{-\frac{3}{5}+\frac{4}{5}i}{-\frac{1}{5}+\frac{8}{5}i} gyda chyfiau cymhleth yr enwadur -\frac{1}{5}-\frac{8}{5}i.
z=\frac{\left(-\frac{3}{5}+\frac{4}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}{\left(-\frac{1}{5}\right)^{2}-\left(\frac{8}{5}\right)^{2}i^{2}}
Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-\frac{3}{5}+\frac{4}{5}i\right)\left(-\frac{1}{5}-\frac{8}{5}i\right)}{\frac{13}{5}}
Drwy ddiffiniad, i^{2} yw -1. Cyfrifwch yr enwadur.
z=\frac{-\frac{3}{5}\left(-\frac{1}{5}\right)-\frac{3}{5}\times \left(-\frac{8}{5}i\right)+\frac{4}{5}i\left(-\frac{1}{5}\right)+\frac{4}{5}\left(-\frac{8}{5}\right)i^{2}}{\frac{13}{5}}
Lluoswch y rhifau cymhleth -\frac{3}{5}+\frac{4}{5}i a -\frac{1}{5}-\frac{8}{5}i yn yr un modd ag y byddech yn lluosogi binomialau.
z=\frac{-\frac{3}{5}\left(-\frac{1}{5}\right)-\frac{3}{5}\times \left(-\frac{8}{5}i\right)+\frac{4}{5}i\left(-\frac{1}{5}\right)+\frac{4}{5}\left(-\frac{8}{5}\right)\left(-1\right)}{\frac{13}{5}}
Drwy ddiffiniad, i^{2} yw -1.
z=\frac{\frac{3}{25}+\frac{24}{25}i-\frac{4}{25}i+\frac{32}{25}}{\frac{13}{5}}
Gwnewch y gwaith lluosi yn -\frac{3}{5}\left(-\frac{1}{5}\right)-\frac{3}{5}\times \left(-\frac{8}{5}i\right)+\frac{4}{5}i\left(-\frac{1}{5}\right)+\frac{4}{5}\left(-\frac{8}{5}\right)\left(-1\right).
z=\frac{\frac{3}{25}+\frac{32}{25}+\left(\frac{24}{25}-\frac{4}{25}\right)i}{\frac{13}{5}}
Cyfunwch y rhannau real a dychmygus yn \frac{3}{25}+\frac{24}{25}i-\frac{4}{25}i+\frac{32}{25}.
z=\frac{\frac{7}{5}+\frac{4}{5}i}{\frac{13}{5}}
Gwnewch y gwaith adio yn \frac{3}{25}+\frac{32}{25}+\left(\frac{24}{25}-\frac{4}{25}\right)i.
z=\frac{7}{13}+\frac{4}{13}i
Rhannu \frac{7}{5}+\frac{4}{5}i â \frac{13}{5} i gael \frac{7}{13}+\frac{4}{13}i.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}