Datrys ar gyfer y
y=64000x^{2}-576000x+1440000
Datrys ar gyfer x (complex solution)
x=-\frac{\sqrt{10y-1440000}}{800}+\frac{9}{2}
x=\frac{\sqrt{10y-1440000}}{800}+\frac{9}{2}
Datrys ar gyfer x
x=-\frac{\sqrt{10y-1440000}}{800}+\frac{9}{2}
x=\frac{\sqrt{10y-1440000}}{800}+\frac{9}{2}\text{, }y\geq 144000
Graff
Rhannu
Copïo i clipfwrdd
y=\left(1200-240x\right)^{2}+80x^{2}\times 80
Lluosi x a x i gael x^{2}.
y=1440000-576000x+57600x^{2}+80x^{2}\times 80
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(1200-240x\right)^{2}.
y=1440000-576000x+57600x^{2}+6400x^{2}
Lluosi 80 a 80 i gael 6400.
y=1440000-576000x+64000x^{2}
Cyfuno 57600x^{2} a 6400x^{2} i gael 64000x^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}