Datrys ar gyfer P (complex solution)
P=e^{\frac{Im(x)arg(y)+iRe(x)arg(y)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|y|\right)^{\frac{Re(x)-iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}
n_{1}\in \mathrm{Z}
Datrys ar gyfer x (complex solution)
\left\{\begin{matrix}x=\frac{2\pi n_{1}i}{\ln(\frac{P+100}{100})}+\log_{\frac{P+100}{100}}\left(y\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 0\text{ and }P\neq 0\text{ and }P\neq -100\\x\in \mathrm{C}\text{, }&\left(P=-100\text{ and }y=0\right)\text{ or }\left(P=0\text{ and }y=1\right)\end{matrix}\right.
Datrys ar gyfer P
\left\{\begin{matrix}P=100y^{\frac{1}{x}}-100\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }y<0\text{ and }y^{\frac{1}{x}}\neq 0\right)\text{ or }\left(y=0\text{ and }x>0\right)\text{ or }\left(y>0\text{ and }x\neq 0\right)\\P=-100y^{\frac{1}{x}}-100\text{, }&\left(y<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }y^{\frac{1}{x}}\neq 0\right)\text{ or }\left(x\neq 0\text{ and }y>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\right)\text{ or }\left(Numerator(x)\text{bmod}2=0\text{ and }y=0\text{ and }x>0\right)\text{ or }\left(y>0\text{ and }x\neq 0\text{ and }y^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\right)\\P\neq -100\text{, }&y=1\text{ and }x=0\end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=\log_{\frac{P+100}{100}}\left(y\right)\text{, }&y>0\text{ and }P\neq 0\text{ and }P>-100\\x\in \mathrm{R}\text{, }&\left(P=0\text{ and }y=1\right)\text{ or }\left(P=-200\text{ and }y=-1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=1\right)\\x>0\text{, }&P=-100\text{ and }y=0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}