Datrys ar gyfer c (complex solution)
\left\{\begin{matrix}c=\frac{\left(x+2\right)\left(x+3\right)}{56m^{2}}\text{, }&m\neq 0\\c\in \mathrm{C}\text{, }&\left(x=-2\text{ or }x=-3\right)\text{ and }m=0\end{matrix}\right.
Datrys ar gyfer c
\left\{\begin{matrix}c=\frac{\left(x+2\right)\left(x+3\right)}{56m^{2}}\text{, }&m\neq 0\\c\in \mathrm{R}\text{, }&\left(x=-2\text{ or }x=-3\right)\text{ and }m=0\end{matrix}\right.
Datrys ar gyfer m (complex solution)
\left\{\begin{matrix}m=-\frac{ic^{-\frac{1}{2}}\sqrt{-x-2}\sqrt{14\left(x+3\right)}}{28}\text{; }m=\frac{ic^{-\frac{1}{2}}\sqrt{-x-2}\sqrt{14\left(x+3\right)}}{28}\text{, }&c\neq 0\\m\in \mathrm{C}\text{, }&\left(x=-2\text{ or }x=-3\right)\text{ and }c=0\end{matrix}\right.
Datrys ar gyfer m
\left\{\begin{matrix}m=\frac{\sqrt{\frac{14\left(x+2\right)\left(x+3\right)}{c}}}{28}\text{; }m=-\frac{\sqrt{\frac{14\left(x+2\right)\left(x+3\right)}{c}}}{28}\text{, }&\left(x\geq -2\text{ and }c>0\right)\text{ or }\left(c>0\text{ and }x\leq -3\right)\text{ or }\left(x\leq -2\text{ and }x\geq -3\text{ and }c<0\right)\\m\in \mathrm{R}\text{, }&\left(x=-2\text{ or }x=-3\right)\text{ and }c=0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
56cm^{2}=x^{2}+5x+6
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
56m^{2}c=x^{2}+5x+6
Mae'r hafaliad yn y ffurf safonol.
\frac{56m^{2}c}{56m^{2}}=\frac{\left(x+2\right)\left(x+3\right)}{56m^{2}}
Rhannu’r ddwy ochr â 56m^{2}.
c=\frac{\left(x+2\right)\left(x+3\right)}{56m^{2}}
Mae rhannu â 56m^{2} yn dad-wneud lluosi â 56m^{2}.
56cm^{2}=x^{2}+5x+6
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
56m^{2}c=x^{2}+5x+6
Mae'r hafaliad yn y ffurf safonol.
\frac{56m^{2}c}{56m^{2}}=\frac{\left(x+2\right)\left(x+3\right)}{56m^{2}}
Rhannu’r ddwy ochr â 56m^{2}.
c=\frac{\left(x+2\right)\left(x+3\right)}{56m^{2}}
Mae rhannu â 56m^{2} yn dad-wneud lluosi â 56m^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}