Datrys ar gyfer Q
\left\{\begin{matrix}Q=-\frac{r}{\sin(\theta )-1}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}+\frac{\pi }{2}\\Q\in \mathrm{R}\text{, }&r=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Datrys ar gyfer r
r=Q\left(-\sin(\theta )+1\right)
Graff
Rhannu
Copïo i clipfwrdd
Q\left(1-\sin(\theta )\right)=r
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
Q-Q\sin(\theta )=r
Defnyddio’r briodwedd ddosbarthu i luosi Q â 1-\sin(\theta ).
\left(1-\sin(\theta )\right)Q=r
Cyfuno pob term sy'n cynnwys Q.
\left(-\sin(\theta )+1\right)Q=r
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-\sin(\theta )+1\right)Q}{-\sin(\theta )+1}=\frac{r}{-\sin(\theta )+1}
Rhannu’r ddwy ochr â 1-\sin(\theta ).
Q=\frac{r}{-\sin(\theta )+1}
Mae rhannu â 1-\sin(\theta ) yn dad-wneud lluosi â 1-\sin(\theta ).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}