Datrys ar gyfer p
p=-\frac{n}{2}-\frac{1}{2}+\frac{7224}{n}
n\neq 0
Datrys ar gyfer n
n=\frac{\sqrt{4p^{2}+4p+57793}}{2}-p-\frac{1}{2}
n=-\frac{\sqrt{4p^{2}+4p+57793}}{2}-p-\frac{1}{2}
Rhannu
Copïo i clipfwrdd
2np+n\left(n+1\right)=14448
Lluoswch ddwy ochr yr hafaliad â 2.
2np+n^{2}+n=14448
Defnyddio’r briodwedd ddosbarthu i luosi n â n+1.
2np+n=14448-n^{2}
Tynnu n^{2} o'r ddwy ochr.
2np=14448-n^{2}-n
Tynnu n o'r ddwy ochr.
2np=14448-n-n^{2}
Mae'r hafaliad yn y ffurf safonol.
\frac{2np}{2n}=\frac{14448-n-n^{2}}{2n}
Rhannu’r ddwy ochr â 2n.
p=\frac{14448-n-n^{2}}{2n}
Mae rhannu â 2n yn dad-wneud lluosi â 2n.
p=-\frac{n}{2}-\frac{1}{2}+\frac{7224}{n}
Rhannwch 14448-n^{2}-n â 2n.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}