Datrys ar gyfer k
\left\{\begin{matrix}k=\ln(7-3\kappa -e^{\lambda +2x})+\lambda +1\text{, }&\kappa <\frac{7-e^{\lambda +2x}}{3}\text{ and }\lambda \leq \kappa -2\text{ and }\lambda \geq 1-2\kappa \\k=\ln(3-2\lambda -\kappa -e^{\lambda +2x})+\lambda +1\text{, }&\kappa <3-2\lambda -e^{\lambda +2x}\text{ and }\lambda \geq \kappa -2\text{ and }\lambda \geq 1-2\kappa \\k=\ln(5+2\lambda +\kappa -e^{\lambda +2x})+\lambda +1\text{, }&\kappa >-\left(5+2\lambda -e^{\lambda +2x}\right)\text{ and }\lambda \leq \kappa -2\text{ and }\lambda \leq 1-2\kappa \\k=\ln(1+3\kappa -e^{\lambda +2x})+\lambda +1\text{, }&\kappa >\frac{e^{\lambda +2x}-1}{3}\text{ and }\lambda \geq \kappa -2\text{ and }\lambda \leq 1-2\kappa \end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}x=\frac{\ln(7-e^{k-\lambda -1}-3\kappa )-\lambda }{2}\text{, }&\kappa <\frac{7-e^{k-\lambda -1}}{3}\text{ and }\lambda \leq \kappa -2\text{ and }\lambda \geq 1-2\kappa \\x=\frac{\ln(3-e^{k-\lambda -1}-2\lambda -\kappa )-\lambda }{2}\text{, }&\kappa <3-e^{k-\lambda -1}-2\lambda \text{ and }\lambda \geq \kappa -2\text{ and }\lambda \geq 1-2\kappa \\x=\frac{\ln(\kappa +2\lambda -e^{k-\lambda -1}+5)-\lambda }{2}\text{, }&\kappa >-2\lambda +e^{k-\lambda -1}-5\text{ and }\lambda \leq \kappa -2\text{ and }\lambda \leq 1-2\kappa \\x=\frac{\ln(3\kappa -e^{k-\lambda -1}+1)-\lambda }{2}\text{, }&\kappa >\frac{e^{k-\lambda -1}-1}{3}\text{ and }\lambda \geq \kappa -2\text{ and }\lambda \leq 1-2\kappa \end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}