Datrys ar gyfer t
t=\frac{\ln(3)}{2}\approx 0.549306144
Datrys ar gyfer t (complex solution)
t=\frac{\ln(3)}{2}+i\pi n_{1}
n_{1}\in \mathrm{Z}
Rhannu
Copïo i clipfwrdd
e^{2t}=3
Defnyddio rheolau esbonyddion a logarithmau i ddatrys yr hafaliad.
\log(e^{2t})=\log(3)
Cymryd logarithm dwy ochr yr hafaliad.
2t\log(e)=\log(3)
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
2t=\frac{\log(3)}{\log(e)}
Rhannu’r ddwy ochr â \log(e).
2t=\log_{e}\left(3\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=\frac{\ln(3)}{2}
Rhannu’r ddwy ochr â 2.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}