Datrys ar gyfer S
S=\frac{\sqrt{10}a-\sqrt{14}a+12-2\sqrt{35}}{2}
Datrys ar gyfer a
a=\frac{-\left(\sqrt{10}+\sqrt{14}\right)S+\sqrt{14}-\sqrt{10}}{2}
Cwis
Linear Equation
5 problemau tebyg i:
a = \sqrt { 6 - \sqrt { 35 } } - \sqrt { 6 + \sqrt { 35 } } S
Rhannu
Copïo i clipfwrdd
\sqrt{6-\sqrt{35}}-\sqrt{6+\sqrt{35}}S=a
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
-\sqrt{6+\sqrt{35}}S=a-\sqrt{6-\sqrt{35}}
Tynnu \sqrt{6-\sqrt{35}} o'r ddwy ochr.
\left(-\sqrt{\sqrt{35}+6}\right)S=a-\sqrt{6-\sqrt{35}}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(-\sqrt{\sqrt{35}+6}\right)S}{-\sqrt{\sqrt{35}+6}}=\frac{a+\frac{\sqrt{10}}{2}-\frac{\sqrt{14}}{2}}{-\sqrt{\sqrt{35}+6}}
Rhannu’r ddwy ochr â -\sqrt{6+\sqrt{35}}.
S=\frac{a+\frac{\sqrt{10}}{2}-\frac{\sqrt{14}}{2}}{-\sqrt{\sqrt{35}+6}}
Mae rhannu â -\sqrt{6+\sqrt{35}} yn dad-wneud lluosi â -\sqrt{6+\sqrt{35}}.
S=-\frac{\frac{\sqrt{14}-\sqrt{10}}{2}\left(2a+\sqrt{10}-\sqrt{14}\right)}{2}
Rhannwch a-\frac{\sqrt{14}}{2}+\frac{\sqrt{10}}{2} â -\sqrt{6+\sqrt{35}}.
a=-\sqrt{\sqrt{35}+6}S+\sqrt{-\sqrt{35}+6}
Aildrefnu'r termau.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}