Datrys ar gyfer V
V=4x\left(12-x\right)^{2}
Datrys ar gyfer x (complex solution)
x=\frac{\sqrt{3}i\sqrt[3]{\sqrt{V^{2}-1024V}+V-512}}{4}-\frac{\sqrt[3]{\sqrt{V^{2}-1024V}+V-512}}{4}+8-16\sqrt{3}i\left(\sqrt{V^{2}-1024V}+V-512\right)^{-\frac{1}{3}}-16\left(\sqrt{V^{2}-1024V}+V-512\right)^{-\frac{1}{3}}
x=\frac{\sqrt[3]{\sqrt{V^{2}-1024V}+V-512}}{2}+8+32\left(\sqrt{V^{2}-1024V}+V-512\right)^{-\frac{1}{3}}
x=-\frac{\sqrt{3}i\sqrt[3]{\sqrt{V^{2}-1024V}+V-512}}{4}-\frac{\sqrt[3]{\sqrt{V^{2}-1024V}+V-512}}{4}+8+16\sqrt{3}i\left(\sqrt{V^{2}-1024V}+V-512\right)^{-\frac{1}{3}}-16\left(\sqrt{V^{2}-1024V}+V-512\right)^{-\frac{1}{3}}
Graff
Rhannu
Copïo i clipfwrdd
V=\left(576-96x+4x^{2}\right)x
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(24-2x\right)^{2}.
V=576x-96x^{2}+4x^{3}
Defnyddio’r briodwedd ddosbarthu i luosi 576-96x+4x^{2} â x.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}