Datrys ar gyfer R_1
R_{1}=\frac{57\Omega \mu }{50000}
Datrys ar gyfer Ω
\left\{\begin{matrix}\Omega =\frac{50000R_{1}}{57\mu }\text{, }&\mu \neq 0\\\Omega \in \mathrm{R}\text{, }&R_{1}=0\text{ and }\mu =0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
R_{1}=1140\times \frac{1}{1000000}\mu \Omega
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
R_{1}=\frac{57}{50000}\mu \Omega
Lluosi 1140 a \frac{1}{1000000} i gael \frac{57}{50000}.
R_{1}=1140\times \frac{1}{1000000}\mu \Omega
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
R_{1}=\frac{57}{50000}\mu \Omega
Lluosi 1140 a \frac{1}{1000000} i gael \frac{57}{50000}.
\frac{57}{50000}\mu \Omega =R_{1}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{57\mu }{50000}\Omega =R_{1}
Mae'r hafaliad yn y ffurf safonol.
\frac{50000\times \frac{57\mu }{50000}\Omega }{57\mu }=\frac{50000R_{1}}{57\mu }
Rhannu’r ddwy ochr â \frac{57}{50000}\mu .
\Omega =\frac{50000R_{1}}{57\mu }
Mae rhannu â \frac{57}{50000}\mu yn dad-wneud lluosi â \frac{57}{50000}\mu .
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}