Datrys ar gyfer Q
Q=\frac{45}{2X-1}
X\neq \frac{1}{2}
Datrys ar gyfer X
X=\frac{1}{2}+\frac{45}{2Q}
Q\neq 0
Rhannu
Copïo i clipfwrdd
Q\left(2X-1\right)=45
Lluoswch ddwy ochr yr hafaliad â 3.
2QX-Q=45
Defnyddio’r briodwedd ddosbarthu i luosi Q â 2X-1.
\left(2X-1\right)Q=45
Cyfuno pob term sy'n cynnwys Q.
\frac{\left(2X-1\right)Q}{2X-1}=\frac{45}{2X-1}
Rhannu’r ddwy ochr â 2X-1.
Q=\frac{45}{2X-1}
Mae rhannu â 2X-1 yn dad-wneud lluosi â 2X-1.
Q\left(2X-1\right)=45
Lluoswch ddwy ochr yr hafaliad â 3.
2QX-Q=45
Defnyddio’r briodwedd ddosbarthu i luosi Q â 2X-1.
2QX=45+Q
Ychwanegu Q at y ddwy ochr.
2QX=Q+45
Mae'r hafaliad yn y ffurf safonol.
\frac{2QX}{2Q}=\frac{Q+45}{2Q}
Rhannu’r ddwy ochr â 2Q.
X=\frac{Q+45}{2Q}
Mae rhannu â 2Q yn dad-wneud lluosi â 2Q.
X=\frac{1}{2}+\frac{45}{2Q}
Rhannwch Q+45 â 2Q.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}