Datrys ar gyfer L
L=P_{50}-\frac{in}{2f}
f\neq 0
Datrys ar gyfer F_b
F_{b}\in \mathrm{C}
P_{50}=L+\frac{in}{2f}\text{ and }f\neq 0
Rhannu
Copïo i clipfwrdd
P_{50}f=fL+\left(\frac{50n}{100}-0F_{b}\right)i
Lluoswch ddwy ochr yr hafaliad â f.
P_{50}f=fL+\left(\frac{1}{2}n-0F_{b}\right)i
Rhannu 50n â 100 i gael \frac{1}{2}n.
P_{50}f=fL+\left(\frac{1}{2}n-0\right)i
Mae lluosi unrhyw beth â sero yn rhoi sero.
fL+\left(\frac{1}{2}n-0\right)i=P_{50}f
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
fL=P_{50}f-\left(\frac{1}{2}n-0\right)i
Tynnu \left(\frac{1}{2}n-0\right)i o'r ddwy ochr.
Lf=P_{50}f-\frac{1}{2}in
Aildrefnu'r termau.
fL=P_{50}f-\frac{in}{2}
Mae'r hafaliad yn y ffurf safonol.
\frac{fL}{f}=\frac{P_{50}f-\frac{in}{2}}{f}
Rhannu’r ddwy ochr â f.
L=\frac{P_{50}f-\frac{in}{2}}{f}
Mae rhannu â f yn dad-wneud lluosi â f.
L=P_{50}-\frac{in}{2f}
Rhannwch P_{50}f-\frac{in}{2} â f.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}