Datrys ar gyfer I
\left\{\begin{matrix}I=\frac{P}{U\cos(\phi )}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\phi =\pi n_{1}+\frac{\pi }{2}\text{ and }U\neq 0\\I\in \mathrm{R}\text{, }&\left(U=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }\phi =\pi n_{1}+\frac{\pi }{2}\right)\text{ and }P=0\end{matrix}\right.
Datrys ar gyfer P
P=IU\cos(\phi )
Rhannu
Copïo i clipfwrdd
UI\cos(\phi )=P
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
U\cos(\phi )I=P
Mae'r hafaliad yn y ffurf safonol.
\frac{U\cos(\phi )I}{U\cos(\phi )}=\frac{P}{U\cos(\phi )}
Rhannu’r ddwy ochr â U\cos(\phi ).
I=\frac{P}{U\cos(\phi )}
Mae rhannu â U\cos(\phi ) yn dad-wneud lluosi â U\cos(\phi ).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}