Datrys ar gyfer M
M=a^{2}-4b
a\neq 0\text{ and }b\neq 0
Datrys ar gyfer a
a=\sqrt{M+4b}
a=-\sqrt{M+4b}\text{, }M>-4b\text{ and }b\neq 0
Rhannu
Copïo i clipfwrdd
M=\left(-b\right)^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0.75a^{3}b}{ab}
Defnyddio'r theorem binomaidd \left(p+q\right)^{2}=p^{2}+2pq+q^{2} i ehangu'r \left(-b+\frac{1}{2}a\right)^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0.75a^{3}b}{ab}
Cyfrifo -b i bŵer 2 a chael b^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-\left(ba-3b\right)\right)-\frac{ab^{3}-0.75a^{3}b}{ab}
Defnyddio’r briodwedd ddosbarthu i luosi b â a-3.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-ba+3b\right)-\frac{ab^{3}-0.75a^{3}b}{ab}
I ddod o hyd i wrthwyneb ba-3b, dewch o hyd i wrthwyneb pob term.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(4b-ba\right)-\frac{ab^{3}-0.75a^{3}b}{ab}
Cyfuno b a 3b i gael 4b.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0.75a^{3}b}{ab}
I ddod o hyd i wrthwyneb 4b-ba, dewch o hyd i wrthwyneb pob term.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{0.25ab\left(-3a^{2}+4b^{2}\right)}{ab}
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{ab^{3}-0.75a^{3}b}{ab}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-0.25\left(-3a^{2}+4b^{2}\right)
Canslo ab yn y rhifiadur a'r enwadur.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\left(-0.75a^{2}+b^{2}\right)
Ehangwch y mynegiad.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba+0.75a^{2}-b^{2}
I ddod o hyd i wrthwyneb -0.75a^{2}+b^{2}, dewch o hyd i wrthwyneb pob term.
M=b^{2}+\left(-b\right)a+a^{2}-4b+ba-b^{2}
Cyfuno \frac{1}{4}a^{2} a 0.75a^{2} i gael a^{2}.
M=\left(-b\right)a+a^{2}-4b+ba
Cyfuno b^{2} a -b^{2} i gael 0.
M=a^{2}-4b
Cyfuno -ba a ba i gael 0.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}