Datrys ar gyfer F
\left\{\begin{matrix}F=\frac{4x+7}{25\left(\frac{x^{2}}{10}-\frac{x}{25}+С\right)}\text{, }&С\neq -\frac{x\left(x-0.4\right)}{10}\\F\in \mathrm{R}\text{, }&x=-\frac{7}{4}\text{ and }С=-\frac{301}{800}\end{matrix}\right.
Datrys ar gyfer x
\left\{\begin{matrix}\\x=-1.75\text{, }&\text{unconditionally}\\x=\frac{\sqrt{625СF^{2}+F^{2}+78F+16}+F+4}{5F}\text{; }x=\frac{-\sqrt{625СF^{2}+F^{2}+78F+16}+F+4}{5F}\text{, }&F\neq 0\text{ and }С\geq -\frac{1}{625}-\frac{78}{625F}-\frac{16}{625F^{2}}\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
\left(\frac{x^{2}}{10}-\frac{x}{25}+С\right)F=\frac{4x+7}{25}
Mae'r hafaliad yn y ffurf safonol.
\frac{\left(\frac{x^{2}}{10}-\frac{x}{25}+С\right)F}{\frac{x^{2}}{10}-\frac{x}{25}+С}=\frac{4x+7}{25\left(\frac{x^{2}}{10}-\frac{x}{25}+С\right)}
Rhannu’r ddwy ochr â \frac{1}{10}x^{2}-0.04x+С.
F=\frac{4x+7}{25\left(\frac{x^{2}}{10}-\frac{x}{25}+С\right)}
Mae rhannu â \frac{1}{10}x^{2}-0.04x+С yn dad-wneud lluosi â \frac{1}{10}x^{2}-0.04x+С.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}