Neidio i'r prif gynnwys
Datrys ar gyfer B (complex solution)
Tick mark Image
Datrys ar gyfer S (complex solution)
Tick mark Image
Datrys ar gyfer B
Tick mark Image
Datrys ar gyfer S
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.05-x\right)^{2}.
SB=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Mae'r hafaliad yn y ffurf safonol.
\frac{SB}{S}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Rhannu’r ddwy ochr â S.
B=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Mae rhannu â S yn dad-wneud lluosi â S.
B=\frac{16\left(25x-1\right)^{2}}{25S\left(20x-1\right)^{2}}
Rhannwch \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} â S.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.05-x\right)^{2}.
BS=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Mae'r hafaliad yn y ffurf safonol.
\frac{BS}{B}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Rhannu’r ddwy ochr â B.
S=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Mae rhannu â B yn dad-wneud lluosi â B.
S=\frac{16\left(25x-1\right)^{2}}{25B\left(20x-1\right)^{2}}
Rhannwch \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} â B.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.05-x\right)^{2}.
SB=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Mae'r hafaliad yn y ffurf safonol.
\frac{SB}{S}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Rhannu’r ddwy ochr â S.
B=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Mae rhannu â S yn dad-wneud lluosi â S.
B=\frac{16\left(25x-1\right)^{2}}{25S\left(20x-1\right)^{2}}
Rhannwch \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} â S.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.04-x\right)^{2}.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(0.05-x\right)^{2}.
BS=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Mae'r hafaliad yn y ffurf safonol.
\frac{BS}{B}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Rhannu’r ddwy ochr â B.
S=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Mae rhannu â B yn dad-wneud lluosi â B.
S=\frac{16\left(25x-1\right)^{2}}{25B\left(20x-1\right)^{2}}
Rhannwch \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} â B.