Ffactor
x\left(7x+1\right)
Enrhifo
x\left(7x+1\right)
Graff
Rhannu
Copïo i clipfwrdd
x\left(7x+1\right)
Ffactora allan x.
7x^{2}+x=0
Gellir ffactorio polynomial cwadratig gan ddefnyddio’r trawsffurfiad ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), lle x_{1} a x_{2} yw datrysiadau’r hafaliad cwadratig ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}}}{2\times 7}
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-1±1}{2\times 7}
Cymryd isradd 1^{2}.
x=\frac{-1±1}{14}
Lluoswch 2 â 7.
x=\frac{0}{14}
Datryswch yr hafaliad x=\frac{-1±1}{14} pan fydd ± yn plws. Adio -1 at 1.
x=0
Rhannwch 0 â 14.
x=-\frac{2}{14}
Datryswch yr hafaliad x=\frac{-1±1}{14} pan fydd ± yn minws. Tynnu 1 o -1.
x=-\frac{1}{7}
Lleihau'r ffracsiwn \frac{-2}{14} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.
7x^{2}+x=7x\left(x-\left(-\frac{1}{7}\right)\right)
Ffactoriwch y mynegiad gwreiddiol gan ddefnyddio ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Cyfnewidiwch 0 am x_{1} a -\frac{1}{7} am x_{2}.
7x^{2}+x=7x\left(x+\frac{1}{7}\right)
Symleiddiwch bob mynegiad ar y ffurf p-\left(-q\right) i p+q.
7x^{2}+x=7x\times \frac{7x+1}{7}
Adio \frac{1}{7} at x drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
7x^{2}+x=x\left(7x+1\right)
Diddymwch y ffactor cyffredin mwyaf 7 yn 7 a 7.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}