Datrys ar gyfer t
t=\frac{100\ln(6)}{17}\approx 10.539761584
Datrys ar gyfer t (complex solution)
t=-\frac{i\times 200\pi n_{1}}{17}+\frac{100\ln(6)}{17}
n_{1}\in \mathrm{Z}
Rhannu
Copïo i clipfwrdd
60e^{-0.17t}=10
Defnyddio rheolau esbonyddion a logarithmau i ddatrys yr hafaliad.
e^{-0.17t}=\frac{1}{6}
Rhannu’r ddwy ochr â 60.
\log(e^{-0.17t})=\log(\frac{1}{6})
Cymryd logarithm dwy ochr yr hafaliad.
-0.17t\log(e)=\log(\frac{1}{6})
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
-0.17t=\frac{\log(\frac{1}{6})}{\log(e)}
Rhannu’r ddwy ochr â \log(e).
-0.17t=\log_{e}\left(\frac{1}{6}\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=-\frac{\ln(6)}{-0.17}
Rhannu dwy ochr hafaliad â -0.17, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}