Datrys ar gyfer r
r=-2400000000000000000000000000000000\sqrt{15}i\approx -0-9.295160031 \cdot 10^{33}i
r=2400000000000000000000000000000000\sqrt{15}i\approx 9.295160031 \cdot 10^{33}i
Rhannu
Copïo i clipfwrdd
5\times 10^{3}r^{2}=9\times 10^{9}\times 8\times 10^{66}\left(-6\right)\times 10^{-6}
All y newidyn r ddim fod yn hafal i 0 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â r^{2}.
5\times 10^{3}r^{2}=9\times 10^{75}\times 8\left(-6\right)\times 10^{-6}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 9 a 66 i gael 75.
5\times 10^{3}r^{2}=9\times 10^{69}\times 8\left(-6\right)
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 75 a -6 i gael 69.
5\times 1000r^{2}=9\times 10^{69}\times 8\left(-6\right)
Cyfrifo 10 i bŵer 3 a chael 1000.
5000r^{2}=9\times 10^{69}\times 8\left(-6\right)
Lluosi 5 a 1000 i gael 5000.
5000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 8\left(-6\right)
Cyfrifo 10 i bŵer 69 a chael 1000000000000000000000000000000000000000000000000000000000000000000000.
5000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 8\left(-6\right)
Lluosi 9 a 1000000000000000000000000000000000000000000000000000000000000000000000 i gael 9000000000000000000000000000000000000000000000000000000000000000000000.
5000r^{2}=72000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
Lluosi 9000000000000000000000000000000000000000000000000000000000000000000000 a 8 i gael 72000000000000000000000000000000000000000000000000000000000000000000000.
5000r^{2}=-432000000000000000000000000000000000000000000000000000000000000000000000
Lluosi 72000000000000000000000000000000000000000000000000000000000000000000000 a -6 i gael -432000000000000000000000000000000000000000000000000000000000000000000000.
r^{2}=\frac{-432000000000000000000000000000000000000000000000000000000000000000000000}{5000}
Rhannu’r ddwy ochr â 5000.
r^{2}=-86400000000000000000000000000000000000000000000000000000000000000000
Rhannu -432000000000000000000000000000000000000000000000000000000000000000000000 â 5000 i gael -86400000000000000000000000000000000000000000000000000000000000000000.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
Mae’r hafaliad wedi’i ddatrys nawr.
5\times 10^{3}r^{2}=9\times 10^{9}\times 8\times 10^{66}\left(-6\right)\times 10^{-6}
All y newidyn r ddim fod yn hafal i 0 gan nad ydy rhannu â sero wedi’i ddiffinio. Lluoswch ddwy ochr yr hafaliad â r^{2}.
5\times 10^{3}r^{2}=9\times 10^{75}\times 8\left(-6\right)\times 10^{-6}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 9 a 66 i gael 75.
5\times 10^{3}r^{2}=9\times 10^{69}\times 8\left(-6\right)
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 75 a -6 i gael 69.
5\times 1000r^{2}=9\times 10^{69}\times 8\left(-6\right)
Cyfrifo 10 i bŵer 3 a chael 1000.
5000r^{2}=9\times 10^{69}\times 8\left(-6\right)
Lluosi 5 a 1000 i gael 5000.
5000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 8\left(-6\right)
Cyfrifo 10 i bŵer 69 a chael 1000000000000000000000000000000000000000000000000000000000000000000000.
5000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 8\left(-6\right)
Lluosi 9 a 1000000000000000000000000000000000000000000000000000000000000000000000 i gael 9000000000000000000000000000000000000000000000000000000000000000000000.
5000r^{2}=72000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
Lluosi 9000000000000000000000000000000000000000000000000000000000000000000000 a 8 i gael 72000000000000000000000000000000000000000000000000000000000000000000000.
5000r^{2}=-432000000000000000000000000000000000000000000000000000000000000000000000
Lluosi 72000000000000000000000000000000000000000000000000000000000000000000000 a -6 i gael -432000000000000000000000000000000000000000000000000000000000000000000000.
5000r^{2}+432000000000000000000000000000000000000000000000000000000000000000000000=0
Ychwanegu 432000000000000000000000000000000000000000000000000000000000000000000000 at y ddwy ochr.
r=\frac{0±\sqrt{0^{2}-4\times 5000\times 432000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 5000}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 5000 am a, 0 am b, a 432000000000000000000000000000000000000000000000000000000000000000000000 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 5000\times 432000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 5000}
Sgwâr 0.
r=\frac{0±\sqrt{-20000\times 432000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 5000}
Lluoswch -4 â 5000.
r=\frac{0±\sqrt{-8640000000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 5000}
Lluoswch -20000 â 432000000000000000000000000000000000000000000000000000000000000000000000.
r=\frac{0±24000000000000000000000000000000000000\sqrt{15}i}{2\times 5000}
Cymryd isradd -8640000000000000000000000000000000000000000000000000000000000000000000000000.
r=\frac{0±24000000000000000000000000000000000000\sqrt{15}i}{10000}
Lluoswch 2 â 5000.
r=2400000000000000000000000000000000\sqrt{15}i
Datryswch yr hafaliad r=\frac{0±24000000000000000000000000000000000000\sqrt{15}i}{10000} pan fydd ± yn plws.
r=-2400000000000000000000000000000000\sqrt{15}i
Datryswch yr hafaliad r=\frac{0±24000000000000000000000000000000000000\sqrt{15}i}{10000} pan fydd ± yn minws.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}