Ffactor
x\left(5x-6\right)
Enrhifo
x\left(5x-6\right)
Graff
Rhannu
Copïo i clipfwrdd
x\left(5x-6\right)
Ffactora allan x.
5x^{2}-6x=0
Gellir ffactorio polynomial cwadratig gan ddefnyddio’r trawsffurfiad ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), lle x_{1} a x_{2} yw datrysiadau’r hafaliad cwadratig ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 5}
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-6\right)±6}{2\times 5}
Cymryd isradd \left(-6\right)^{2}.
x=\frac{6±6}{2\times 5}
Gwrthwyneb -6 yw 6.
x=\frac{6±6}{10}
Lluoswch 2 â 5.
x=\frac{12}{10}
Datryswch yr hafaliad x=\frac{6±6}{10} pan fydd ± yn plws. Adio 6 at 6.
x=\frac{6}{5}
Lleihau'r ffracsiwn \frac{12}{10} i'r graddau lleiaf posib drwy dynnu a chanslo allan 2.
x=\frac{0}{10}
Datryswch yr hafaliad x=\frac{6±6}{10} pan fydd ± yn minws. Tynnu 6 o 6.
x=0
Rhannwch 0 â 10.
5x^{2}-6x=5\left(x-\frac{6}{5}\right)x
Ffactoriwch y mynegiad gwreiddiol gan ddefnyddio ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Cyfnewidiwch \frac{6}{5} am x_{1} a 0 am x_{2}.
5x^{2}-6x=5\times \frac{5x-6}{5}x
Tynnwch \frac{6}{5} o x drwy ddod o hyd i enwadur cyffredin a thynnu’r rhifiaduron. Yna, dylech leihau’r ffracsiwn i’r termau isaf os yn bosibl.
5x^{2}-6x=\left(5x-6\right)x
Diddymwch y ffactor cyffredin mwyaf 5 yn 5 a 5.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}