5 = ( 1 + 9.6 \% ) ^ { n }
Datrys ar gyfer n
n=\log_{1.096}\left(5\right)\approx 17.557404545
Rhannu
Copïo i clipfwrdd
5=\left(1+\frac{96}{1000}\right)^{n}
Ehangu \frac{9.6}{100} drwy luosi'r rhifiadur a'r enwadur gyda 10.
5=\left(1+\frac{12}{125}\right)^{n}
Lleihau'r ffracsiwn \frac{96}{1000} i'r graddau lleiaf posib drwy dynnu a chanslo allan 8.
5=\left(\frac{137}{125}\right)^{n}
Adio 1 a \frac{12}{125} i gael \frac{137}{125}.
\left(\frac{137}{125}\right)^{n}=5
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\log(\left(\frac{137}{125}\right)^{n})=\log(5)
Cymryd logarithm dwy ochr yr hafaliad.
n\log(\frac{137}{125})=\log(5)
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
n=\frac{\log(5)}{\log(\frac{137}{125})}
Rhannu’r ddwy ochr â \log(\frac{137}{125}).
n=\log_{\frac{137}{125}}\left(5\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}